21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Source separation in ecoacoustics: a roadmap towards versatile soundscape information retrieval

      1 , 2
      Remote Sensing in Ecology and Conservation
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reducing the dimensionality of data with neural networks.

            High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Learning the parts of objects by non-negative matrix factorization.

              Is perception of the whole based on perception of its parts? There is psychological and physiological evidence for parts-based representations in the brain, and certain computational theories of object recognition rely on such representations. But little is known about how brains or computers might learn the parts of objects. Here we demonstrate an algorithm for non-negative matrix factorization that is able to learn parts of faces and semantic features of text. This is in contrast to other methods, such as principal components analysis and vector quantization, that learn holistic, not parts-based, representations. Non-negative matrix factorization is distinguished from the other methods by its use of non-negativity constraints. These constraints lead to a parts-based representation because they allow only additive, not subtractive, combinations. When non-negative matrix factorization is implemented as a neural network, parts-based representations emerge by virtue of two properties: the firing rates of neurons are never negative and synaptic strengths do not change sign.
                Bookmark

                Author and article information

                Contributors
                Journal
                Remote Sensing in Ecology and Conservation
                Remote Sens Ecol Conserv
                Wiley
                2056-3485
                2056-3485
                September 2020
                December 16 2019
                September 2020
                : 6
                : 3
                : 236-247
                Affiliations
                [1 ]Research Institute for Global Change Japan Agency for Marine‐Earth Science and Technology (JAMSTEC) 2–15 Natsushima‐cho Yokosuka, Kanagawa 237‐0061 Japan
                [2 ]Research Center for Information Technology Innovation Academia Sinica 128 Academia Road, Section 2, Nankang Taipei 115 Taiwan
                Article
                10.1002/rse2.141
                ffaefbee-e651-4e07-8413-6ab91a3b2500
                © 2020

                http://creativecommons.org/licenses/by-nc/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article