20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Target Receptors in the Control of Insect Pests: Part II 

      Voltage-Gated Sodium Channels as Insecticide Targets

      edited_book

      Read this book at

      Publisher
      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references166

          • Record: found
          • Abstract: not found
          • Article: not found

          A quantitative description of membrane current and its application to conduction and excitation in nerve

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DDT, pyrethrins, pyrethroids and insect sodium channels.

            The long term use of many insecticides is continually threatened by the ability of insects to evolve resistance mechanisms that render the chemicals ineffective. Such resistance poses a serious threat to insect pest control both in the UK and worldwide. Resistance may result from either an increase in the ability of the insect to detoxify the insecticide or by changes in the target protein with which the insecticide interacts. DDT, the pyrethrins and the synthetic pyrethroids (the latter currently accounting for around 17% of the world insecticide market), act on the voltage-gated sodium channel proteins found in insect nerve cell membranes. The correct functioning of these channels is essential for normal transmission of nerve impulses and this process is disrupted by binding of the insecticides, leading to paralysis and eventual death. Some insect pest populations have evolved modifications of the sodium channel protein which prevent the binding of the insecticide and result in the insect developing resistance. Here we review some of the work (done at Rothamsted Research and elsewhere) that has led to the identification of specific residues on the sodium channel that may constitute the DDT and pyrethroid binding sites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              THE CRYSTAL STRUCTURE OF A VOLTAGE-GATED SODIUM CHANNEL

              Voltage-gated sodium channels initiate electrical signaling in excitable cells and are the molecular targets for drugs and disease mutations, but the structural basis for their voltage-dependent activation, ion selectivity, and drug block is unknown. Here, we report the crystal structure of a voltage-gated Na+-channel from Arcobacter butzleri (NavAb) captured in a closed-pore conformation with four activated voltage-sensors at 2.7 Å resolution. The arginine gating charges make multiple hydrophilic interactions within the voltage-sensor, including unanticipated hydrogen bonds to the protein backbone. Comparisons to previous open-pore potassium channel structures suggest that the voltage-sensor domains and the S4-S5 linkers dilate the central pore by pivoting together around a hinge at the base of the pore module. The NavAb selectivity filter is short, ~6.5 Å wide, and water-filled, with four acidic side-chains surrounding the narrowest part of the ion conduction pathway. This unique structure presents a high field-strength anionic coordination site, which confers Na+-selectivity through partial dehydration via direct interaction with glutamate side-chains. Fenestrations in the sides of the pore module are unexpectedly penetrated by fatty acyl chains that extend into the central cavity, and these portals are large enough for the entry of small, hydrophobic pore-blocking drugs.
                Bookmark

                Author and book information

                Book Chapter
                2014
                : 389-433
                10.1016/B978-0-12-417010-0.00005-7
                185e8601-21f7-40a3-be59-a322353a5923
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,260

                Cited by31