38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Book Chapter: found
      Is Open Access
      The Potato Crop 

      Insect Pests Affecting Potatoes in Tropical, Subtropical, and Temperate Regions

      other

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Global metabolic impacts of recent climate warming.

          Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Integrated pest management: historical perspectives and contemporary developments.

            M Kogan (1998)
            Twenty five years after its first enunciation, IPM is recognized as one of the most robust constructs to arise in the agricultural sciences during the second half of the twentieth century. The history of IPM, however, can be traced back to the late 1800s when ecology was identified as the foundation for scientific plant protection. That history, since the advent of modern organosynthetic pesticides, acquired elements of drama, intrigue, jealousy, and controversy that mark the path of many great scientific or technological achievements. Evolution of IPM followed multiple paths in several countries and reached beyond the confines of entomological sciences. Time and space constraints, however, bias this review toward entomology, among the plant protection sciences, and give it an obvious US slant, despite the global impact of IPM.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of hopperburn: an overview of insect taxonomy, behavior, and physiology.

              Hopperburn is a non-contagious disease of plants caused by the direct feeding damage of certain leafhoppers and planthoppers. Although long studied, especially with Empoasca spp. leafhoppers (Cicadellidae: Typhlocybinae), the mechanisms underlying hopperburn have only recently been elucidated. Hopperburn is caused by a dynamic interaction between complex insect feeding stimuli (termed hopperburn initiation) and complex plant responses (termed the hopperburn cascade). Herein we review the nature of the feeding stimuli in hopperburn initiation, especially for Empoasca spp., which we also compare with the planthopper Nilaparvata lugens. Contrary to previous reports, Empoasca hopperburn is not caused solely by toxic saliva. Instead, it is caused by a plant wound response triggered by a unique type of stylet movement, which is then exacerbated by saliva. Electrical penetration graph monitoring has revealed that all Empoasca spp. are cell rupture feeders, not sheath feeders, and that certain tactics of that feeding strategy are more damaging than others. Measuring the proportions of the most damaging feeding led to development of a resistance index, the Stylet Penetration Index, which can predict hopperburn severity in different plants or under different environmental conditions and can supplement or replace traditional, field-based resistance indices.
                Bookmark

                Author and book information

                Book Chapter
                2020
                December 04 2019
                : 251-306
                10.1007/978-3-030-28683-5_8
                1d3140c4-c07f-43dd-8c8e-3b9c175fd3bb
                History

                Comments

                Comment on this book

                Book chapters

                Similar content1,053

                Cited by6