1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Strategies to Modify the Drug Release from Pharmaceutical Systems 

      Drug delivery systems

      edited_book
      Elsevier

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Liposomal drug delivery systems: from concept to clinical applications.

          The first closed bilayer phospholipid systems, called liposomes, were described in 1965 and soon were proposed as drug delivery systems. The pioneering work of countless liposome researchers over almost 5 decades led to the development of important technical advances such as remote drug loading, extrusion for homogeneous size, long-circulating (PEGylated) liposomes, triggered release liposomes, liposomes containing nucleic acid polymers, ligand-targeted liposomes and liposomes containing combinations of drugs. These advances have led to numerous clinical trials in such diverse areas as the delivery of anti-cancer, anti-fungal and antibiotic drugs, the delivery of gene medicines, and the delivery of anesthetics and anti-inflammatory drugs. A number of liposomes (lipidic nanoparticles) are on the market, and many more are in the pipeline. Lipidic nanoparticles are the first nanomedicine delivery system to make the transition from concept to clinical application, and they are now an established technology platform with considerable clinical acceptance. We can look forward to many more clinical products in the future. Copyright © 2012 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microneedles for drug and vaccine delivery.

            Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990's when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Diffusion of univalent ions across the lamellae of swollen phospholipids.

                Bookmark

                Author and book information

                Book Chapter
                2015
                : 87-194
                10.1016/B978-0-08-100092-2.00006-0
                3a26a2c7-a14e-489b-9d47-420932a1578e
                History

                Comments

                Comment on this book