0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Arthropod Biology and Evolution 

      Arthropod Limbs and their Development

      other
      Springer Berlin Heidelberg

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence.

          Understanding the head is one of the great challenges in the fields of comparative anatomy, developmental biology, and palaeontology of arthropods. Numerous conflicting views and interpretations are based on an enormous variety of descriptive and experimental approaches. The interpretation of the head influences views on phylogenetic relationships within the Arthropoda as well as outgroup relationships. Here, we review current hypotheses about head segmentation and the nature of head structures from various perspectives, which we try to combine to gain a deeper understanding of the arthropod head. Though discussion about arthropod heads shows some progress, unquestioned concepts (e.g., a presegmental acron) are still a source of bias. Several interpretations are no longer tenable based on recent results from comparative molecular developmental studies, improved morphological investigations, and new fossils. Current data indicate that the anterior arthropod head comprises three elements: the protocerebral/ocular region, the deutocerebral/antennal/cheliceral segment, and the tritocerebral/pedipalpal/second antennal/intercalary segment. The labrum and the mouth are part of the protocerebral/ocular region. Whether the labrum derives from a former pair of limbs remains an open question, but a majority of data support its broad homology across the Euarthropoda. From the alignment of head segments between onychophorans and euarthropods, we develop the concept of "primary" and "secondary antennae" in Recent and fossil arthropods, posit that "primary antennae" are retained in some fossil euarthropods below the crown group level, and propose that Trilobita are stem lineage representatives of the Mandibulata.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The evolution of arthropod limbs.

            Limb morphology across the arthropods is reviewed using external morphological and internal anatomical data from both recent and fossil arthropods. Evolutionary trends in limb structure are identified primarily by reference to the more rigorous of the many existing phylogenetic schemes, but no major new phylogenetic inferences are presented. Tagmosis patterns are not considered, although the origins and patterns of heteronomy within the postantennulary limb series are analysed. The phenomenon of annulation is examined and two basic types of annuli are recognised: terminal and intercalary. The annulation of the apical segment of a limb results in the formation of terminal flagella, and is typical of primarily sensory appendages such as insect and malacostracan antennules and maxillary palps of some hexapods. Intercalary annulation, arising by subdivision of existing subterminal segments, is common, particularly in the tarsal region of arthropodan walking limbs. Differentiating between segments and annuli is discussed and is recognised as a limiting factor in the interpretation of fossils, which usually lack information on intrinsic musculature, and in the construction of groundplans. Rare examples of secondary segmentation, where the criteria for distinguishing between segments and annuli fail, are also highlighted. The basic crown-group arthropodan limb is identified as tripartite, comprising protopodite, telopodite and exopodite, and the basic segmentation patterns of each of these parts are hypothesised. Possible criteria are discussed that can be used for establishing the boundary between protopodite and telopodite in limbs that are uniramous through loss of the exopodite. The subdivision of the protopodite, which is typical of the postantennulary limbs of mandibulates, is examined. The difficulties resulting from the partial or complete failure of expression of articulations within the mandibulate protopodite and subsequent incorporation of partial protopodal segments into the body wall, are also discussed. The development and homology between the various exites, including gills, on the postantennulary limbs of arthropods are considered in some detail, and the question of the possible homology between crustacean gills and insect wings is critically addressed. The hypothesis that there are only two basic limb types in arthropods, antennules and postantennulary limbs, is proposed and its apparent contradiction by the transformation of antennules into walking limbs by homeotic mutation is discussed with respect to the appropriate level of serial homology between these limbs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences.

              The remarkable antiquity, diversity and ecological significance of arthropods have inspired numerous attempts to resolve their deep phylogenetic history, but the results of two decades of intensive molecular phylogenetics have been mixed. The discovery that terrestrial insects (Hexapoda) are more closely related to aquatic Crustacea than to the terrestrial centipedes and millipedes (Myriapoda) was an early, if exceptional, success. More typically, analyses based on limited samples of taxa and genes have generated results that are inconsistent, weakly supported and highly sensitive to analytical conditions. Here we present strongly supported results from likelihood, Bayesian and parsimony analyses of over 41 kilobases of aligned DNA sequence from 62 single-copy nuclear protein-coding genes from 75 arthropod species. These species represent every major arthropod lineage, plus five species of tardigrades and onychophorans as outgroups. Our results strongly support Pancrustacea (Hexapoda plus Crustacea) but also strongly favour the traditional morphology-based Mandibulata (Myriapoda plus Pancrustacea) over the molecule-based Paradoxopoda (Myriapoda plus Chelicerata). In addition to Hexapoda, Pancrustacea includes three major extant lineages of 'crustaceans', each spanning a significant range of morphological disparity. These are Oligostraca (ostracods, mystacocarids, branchiurans and pentastomids), Vericrustacea (malacostracans, thecostracans, copepods and branchiopods) and Xenocarida (cephalocarids and remipedes). Finally, within Pancrustacea we identify Xenocarida as the long-sought sister group to the Hexapoda, a result confirming that 'crustaceans' are not monophyletic. These results provide a statistically well-supported phylogenetic framework for the largest animal phylum and represent a step towards ending the often-heated, century-long debate on arthropod relationships.
                Bookmark

                Author and book information

                Book Chapter
                2013
                April 12 2013
                : 241-267
                10.1007/978-3-642-36160-9_11
                443e31b6-d174-41b1-a0c6-a8c5077ccb8c
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,889

                Cited by1