6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Application of Brain Oscillations in Neuropsychiatric Diseases - Selected Papers from “Brain Oscillations in Cognitive Impairment and Neurotransmitters” Conference, Istanbul, Turkey, 29 April–1 May 2011 

      Brain's alpha, beta, gamma, delta, and theta oscillations in neuropsychiatric diseases

      edited_book

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references151

          • Record: found
          • Abstract: found
          • Article: not found

          Neuronal oscillations in cortical networks.

          G Buzsáki (2004)
          Clocks tick, bridges and skyscrapers vibrate, neuronal networks oscillate. Are neuronal oscillations an inevitable by-product, similar to bridge vibrations, or an essential part of the brain's design? Mammalian cortical neurons form behavior-dependent oscillating networks of various sizes, which span five orders of magnitude in frequency. These oscillations are phylogenetically preserved, suggesting that they are functionally relevant. Recent findings indicate that network oscillations bias input selection, temporally link neurons into assemblies, and facilitate synaptic plasticity, mechanisms that cooperatively support temporal representation and long-term consolidation of information.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks.

            We studied the reactivity of EEG rhythms (mu rhythms) in association with the imagination of right hand, left hand, foot, and tongue movement with 60 EEG electrodes in nine able-bodied subjects. During hand motor imagery, the hand mu rhythm blocked or desynchronized in all subjects, whereas an enhancement of the hand area mu rhythm was observed during foot or tongue motor imagery in the majority of the subjects. The frequency of the most reactive components was 11.7 Hz +/- 0.4 (mean +/- SD). While the desynchronized components were broad banded and centered at 10.9 Hz +/- 0.9, the synchronized components were narrow banded and displayed higher frequencies at 12.0 Hz +/- 1.0. The discrimination between the four motor imagery tasks based on classification of single EEG trials improved when, in addition to event-related desynchronization (ERD), event-related synchronization (ERS) patterns were induced in at least one or two tasks. This implies that such EEG phenomena may be utilized in a multi-class brain-computer interface (BCI) operated simply by motor imagery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human.

              Considerable interest has been raised by non-phase-locked episodes of synchronization in the gamma-band (30-60 Hz). One of their putative roles in the visual modality is feature-binding. We tested the stimulus specificity of high-frequency oscillations in humans using three types of visual stimuli: two coherent stimuli (a Kanizsa and a real triangle) and a noncoherent stimulus ("no-triangle stimulus"). The task of the subject was to count the occurrences of a curved illusory triangle. A time-frequency analysis of single-trial EEG data recorded from eight human subjects was performed to characterize phase-locked as well as non-phase-locked high-frequency activities. We found in early phase-locked 40 Hz component, maximal at electrodes Cz-C4, which does not vary with stimulation type. We describe a second 40 Hz component, appearing around 280 msec, that is not phase-locked to stimulus onset. This component is stronger in response to a coherent triangle, whether real or illusory: it could reflect, therefore, a mechanism of feature binding based on high-frequency synchronization. Because both the illusory and the real triangle are more target-like, it could also correspond to an oscillatory mechanism for testing the match between stimulus and target. At the same latencies, the low-frequency evoked response components phase-locked to stimulus onset behave differently, suggesting that low- and high-frequency activities have different functional roles.
                Bookmark

                Author and book information

                Book Chapter
                2013
                : 19-54
                10.1016/B978-0-7020-5307-8.00002-8
                8e15dd5f-05ef-434b-8181-b95efd752bd2
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,388

                Cited by9