3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Reviews on Biomarker Studies in Aging and Anti-Aging Research 

      Sex Differences in Aging and Associated Biomarkers

      other
      , ,
      Springer International Publishing

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response.

          The hypothalamo-pituitary-adrenocortical (HPA) axis is required for stress adaptation. Activation of the HPA axis causes secretion of glucocorticoids, which act on multiple organ systems to redirect energy resources to meet real or anticipated demand. The HPA stress response is driven primarily by neural mechanisms, invoking corticotrophin releasing hormone (CRH) release from hypothalamic paraventricular nucleus (PVN) neurons. Pathways activating CRH release are stressor dependent: reactive responses to homeostatic disruption frequently involve direct noradrenergic or peptidergic drive of PVN neurons by sensory relays, whereas anticipatory responses use oligosynaptic pathways originating in upstream limbic structures. Anticipatory responses are driven largely by disinhibition, mediated by trans-synaptic silencing of tonic PVN inhibition via GABAergic neurons in the amygdala. Stress responses are inhibited by negative feedback mechanisms, whereby glucocorticoids act to diminish drive (brainstem) and promote transsynaptic inhibition by limbic structures (e.g., hippocampus). Glucocorticoids also act at the PVN to rapidly inhibit CRH neuronal activity via membrane glucocorticoid receptors. Chronic stress-induced activation of the HPA axis takes many forms (chronic basal hypersecretion, sensitized stress responses, and even adrenal exhaustion), with manifestation dependent upon factors such as stressor chronicity, intensity, frequency, and modality. Neural mechanisms driving chronic stress responses can be distinct from those controlling acute reactions, including recruitment of novel limbic, hypothalamic, and brainstem circuits. Importantly, an individual's response to acute or chronic stress is determined by numerous factors, including genetics, early life experience, environmental conditions, sex, and age. The context in which stressors occur will determine whether an individual's acute or chronic stress responses are adaptive or maladaptive (pathological).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study.

            We used longitudinal data from the Massachusetts Male Aging Study, a large population-based random-sample cohort of men aged 40-70 yr at baseline, to establish normative age trends for serum level of T and related hormones in middle-aged men and to test whether general health status affected the age trends. Of 1,709 men enrolled in 1987-1989, 1,156 were followed up 7-10 yr afterward. By repeated-measures statistical analysis, we estimated simultaneously the cross-sectional age trend of each hormone between subjects within the baseline data, the cross-sectional trend between subjects within the follow-up data, and the longitudinal trend within subjects between baseline and follow-up. Total T declined cross-sectionally at 0.8%/yr of age within the follow-up data, whereas both free and albumin-bound T declined at about 2%/yr, all significantly more steeply than within the baseline data. Sex hormone-binding globulin increased cross-sectionally at 1.6%/yr in the follow-up data, similarly to baseline. The longitudinal decline within subjects between baseline and follow-up was considerably steeper than the cross-sectional trend within measurement times for total T (1.6%/yr) and bioavailable T (2-3%/yr). Dehydroepiandrosterone, dehydroepiandrosterone sulfate, cortisol, and estrone showed significant longitudinal declines, whereas dihydrotestosterone, pituitary gonadotropins, and PRL rose longitudinally. Apparent good health, defined as absence of chronic illness, prescription medication, obesity, or excessive drinking, added 10-15% to the level of several androgens and attenuated the cross-sectional trends in T and LH but did not otherwise affect longitudinal or cross-sectional trends. The paradoxical finding that longitudinal age trends were steeper than cross-sectional trends suggests that incident poor health may accelerate the age-related decline in androgen levels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of late-onset hypogonadism in middle-aged and elderly men.

              The association between aging-related testosterone deficiency and late-onset hypogonadism in men remains a controversial concept. We sought evidence-based criteria for identifying late-onset hypogonadism in the general population on the basis of an association between symptoms and a low testosterone level. We surveyed a random population sample of 3369 men between the ages of 40 and 79 years at eight European centers. Using questionnaires, we collected data with regard to the subjects' general, sexual, physical, and psychological health. Levels of total testosterone were measured in morning blood samples by mass spectrometry, and free testosterone levels were calculated with the use of Vermeulen's formula. Data were randomly split into separate training and validation sets for confirmatory analyses. In the training set, symptoms of poor morning erection, low sexual desire, erectile dysfunction, inability to perform vigorous activity, depression, and fatigue were significantly related to the testosterone level. Increased probabilities of the three sexual symptoms and limited physical vigor were discernible with decreased testosterone levels (ranges, 8.0 to 13.0 nmol per liter [2.3 to 3.7 ng per milliliter] for total testosterone and 160 to 280 pmol per liter [46 to 81 pg per milliliter] for free testosterone). However, only the three sexual symptoms had a syndromic association with decreased testosterone levels. An inverse relationship between an increasing number of sexual symptoms and a decreasing testosterone level was observed. These relationships were independently confirmed in the validation set, in which the strengths of the association between symptoms and low testosterone levels determined the minimum criteria necessary to identify late-onset hypogonadism. Late-onset hypogonadism can be defined by the presence of at least three sexual symptoms associated with a total testosterone level of less than 11 nmol per liter (3.2 ng per milliliter) and a free testosterone level of less than 220 pmol per liter (64 pg per milliliter). 2010 Massachusetts Medical Society
                Bookmark

                Author and book information

                Book Chapter
                2019
                September 07 2019
                : 57-76
                10.1007/978-3-030-25650-0_4
                99ae9a84-e9d0-4f0c-b2f8-db2da3cc3a99
                History

                Comments

                Comment on this book

                Book chapters

                Similar content3,170