60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Widespread sex differences in gene expression and splicing in the adult human brain

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is strong evidence to show that men and women differ in terms of neurodevelopment, neurochemistry and susceptibility to neurodegenerative and neuropsychiatric disease. The molecular basis of these differences remains unclear. Progress in this field has been hampered by the lack of genome-wide information on sex differences in gene expression and in particular splicing in the human brain. Here we address this issue by using post-mortem adult human brain and spinal cord samples originating from 137 neuropathologically confirmed control individuals to study whole-genome gene expression and splicing in 12 CNS regions. We show that sex differences in gene expression and splicing are widespread in adult human brain, being detectable in all major brain regions and involving 2.5% of all expressed genes. We give examples of genes where sex-biased expression is both disease-relevant and likely to have functional consequences, and provide evidence suggesting that sex biases in expression may reflect sex-biased gene regulatory structures.

          Abstract

          Men and women differ in terms of their neurochemistry, behaviour and susceptibility to disease. Here the authors show that sex differences in gene expression and splicing are widespread in adult human brain, and that sex-biased expression is likely to have functional consequences.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles

          Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            KEGG: kyoto encyclopedia of genes and genomes.

            M Kanehisa (2000)
            KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exploration, normalization, and summaries of high density oligonucleotide array probe level data.

              In this paper we report exploratory analyses of high-density oligonucleotide array data from the Affymetrix GeneChip system with the objective of improving upon currently used measures of gene expression. Our analyses make use of three data sets: a small experimental study consisting of five MGU74A mouse GeneChip arrays, part of the data from an extensive spike-in study conducted by Gene Logic and Wyeth's Genetics Institute involving 95 HG-U95A human GeneChip arrays; and part of a dilution study conducted by Gene Logic involving 75 HG-U95A GeneChip arrays. We display some familiar features of the perfect match and mismatch probe (PM and MM) values of these data, and examine the variance-mean relationship with probe-level data from probes believed to be defective, and so delivering noise only. We explain why we need to normalize the arrays to one another using probe level intensities. We then examine the behavior of the PM and MM using spike-in data and assess three commonly used summary measures: Affymetrix's (i) average difference (AvDiff) and (ii) MAS 5.0 signal, and (iii) the Li and Wong multiplicative model-based expression index (MBEI). The exploratory data analyses of the probe level data motivate a new summary measure that is a robust multi-array average (RMA) of background-adjusted, normalized, and log-transformed PM values. We evaluate the four expression summary measures using the dilution study data, assessing their behavior in terms of bias, variance and (for MBEI and RMA) model fit. Finally, we evaluate the algorithms in terms of their ability to detect known levels of differential expression using the spike-in data. We conclude that there is no obvious downside to using RMA and attaching a standard error (SE) to this quantity using a linear model which removes probe-specific affinities.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                22 November 2013
                : 4
                : 2771
                Affiliations
                [1 ]Reta Lilla Weston Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology , Queen Square, London WC1N 3BG, UK
                [2 ]Department of Genetics, King Faisal Specialist Hospital and Research Centre , PO Box 3354, Riyadh 11211, Saudi Arabia
                [3 ]Department of Medical and Molecular Genetics, King’s College London, Guy’s Hospital , 8th Floor, Tower Wing, London SE1 9RT, UK
                [4 ]MRC Sudden Death Brain Bank Project, Department of Neuropathology, University of Edinburgh , Wilkie Building, Teviot Place, Edinburgh EH8 9AG, UK
                [5 ]These authors contributed equally to this work
                [6 ]Investigators within the North American Brain Expression Consortium are listed in Supplementary Note 1
                Author notes
                Article
                ncomms3771
                10.1038/ncomms3771
                3868224
                24264146
                64b40857-7742-4db8-8b22-e94a54d72050
                Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 26 March 2013
                : 15 October 2013
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article