15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      Are you tired of sifting through news that doesn't interest you?
      Personalize your Karger newsletter today and get only the news that matters to you!

      Sign up

      • Record: found
      • Abstract: found
      • Article: found

      Transport barriers in transscleral drug delivery for retinal diseases.

      Ophthalmic research
      Biological Transport, Humans, Pharmaceutical Preparations, administration & dosage, Pharmacokinetics, Retinal Diseases, drug therapy, Sclera, metabolism

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transscleral delivery has emerged as an attractive method for treating retinal disorders because it offers localized delivery of drugs as a less invasive method compared to intravitreal administration. Numerous novel transscleral drug delivery systems ranging from microparticles to implants have been reported. However, transscleral delivery is currently not as clinically effective as intravitreal delivery in the treatment of retinal diseases. Transscleral drug delivery systems require drugs to permeate through several layers of ocular tissue (sclera, Bruch's membrane-choroid, retinal pigment epithelium) to reach the neuroretina. As a result, a steep drug concentration gradient from the sclera to the retina is established, and very low concentrations of drug are detected in the retina. This steep gradient is created by the barriers to transport that hinder drug molecules from successfully reaching the retina. A review of the literature reveals 3 types of barriers hindering transscleral drug delivery: static, dynamic and metabolic. While static barriers have been examined in detail, the literature on dynamic and metabolic barriers is lacking. These barriers must be investigated further to gain a more complete understanding of the transport barriers involved in transscleral drug delivery. (c) 2007 S. Karger AG, Basel.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye.

          The objective of this study was to collect a comprehensive database of ocular tissue permeability measurements found in a review of the literature to guide models for drug transport in the eye. Well over 300 permeability measurements of cornea, sclera, and conjunctiva, as well as corneal epithelium, stroma, and endothelium, were obtained for almost 150 different compounds from more than 40 different studies. In agreement with previous work, the corneal epithelium was shown generally to control transcorneal transport, where corneal stroma and endothelium contribute significantly only to the barrier for small, lipophilic compounds. In addition, other quantitative comparisons between ocular tissues are presented. This study provides an extensive database of ocular tissue permeabilities, which should be useful for future development and validation of models to predict rates of drug delivery to the eye.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Topical and systemic drug delivery to the posterior segments.

            The posterior segments of the eye are exquisitely protected from the external environment. This poses unique and fairly challenging hurdles for drug delivery. It is somewhat dogmatic that topical ocular delivery is insufficient to achieve therapeutic drug levels in the posterior segments. However, some drugs are currently challenging this dogma. In this review we investigate the constraints and challenges of drug delivery to the posterior segment. Additionally, we outline several potential absorption pathways that may potentially be exploited to deliver drug to the back of the eye. Data on several compounds that achieve therapeutic posterior segment concentrations after topical dosing is presented. Finally, the issues surrounding systemic delivery to the posterior segment are reviewed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics.

              Corneal epithelium and blood-retina barrier (i.e. retinal capillaries and retinal pigment epithelium (RPE)) are the key membranes that regulate the access of xenobiotics into the ocular tissues. Corneal epithelium limits drug absorption from the lacrimal fluid into the anterior chamber after eyedrop administration, whereas blood-retina barrier restricts the entry of drugs from systemic circulation to the posterior eye segment. Like in general pharmacokinetics, the role of transporters has been considered to be quite limited as compared to the passive diffusion of drugs across the membranes. As the functional role of transporters is being revealed it has become evident that the transporters are widely important in pharmacokinetics. This review updates the current knowledge about the transporters in the corneal epithelium and blood-retina barrier and demonstrates that the information is far from complete. We also show that quite many ocular drugs are known to interact with transporters, but the studies about the expression and function of those transporters in the eye are still sparse. Therefore, the transporters probably have greater role in ocular pharmacokinetics than we currently realise.
                Bookmark

                Author and article information

                Journal
                17851264
                10.1159/000108117

                Chemistry
                Biological Transport,Humans,Pharmaceutical Preparations,administration & dosage,Pharmacokinetics,Retinal Diseases,drug therapy,Sclera,metabolism

                Comments

                Comment on this article