Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The IPEA dilemma in CASPT2

      Chem. Sci.
      Royal Society of Chemistry (RSC)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table.

          In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Progress and challenges in the calculation of electronic excited states.

            A detailed understanding of the properties of electronic excited states and the reaction mechanisms that molecules undergo after light irradiation is a fundamental ingredient for following light-driven natural processes and for designing novel photonic materials. The aim of this review is to present an overview of the ab initio quantum chemical and time-dependent density functional theory methods that can be used to model spectroscopy and photochemistry in molecular systems. The applicability and limitations of the different methods as well as the main frontiers are discussed. To illustrate the progress achieved by excited-state chemistry in the recent years as well as the main challenges facing computational chemistry, three main applications that reflect the authors' experience are addressed: the UV/Vis spectroscopy of organic molecules, the assignment of absorption and emission bands of organometallic complexes, and finally, the obtainment of non-adiabatic photoinduced pathways mediated by conical intersections. In the latter case, special emphasis is put on the photochemistry of DNA. These applications show that the description of electronically excited states is a rewarding but challenging area of research.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Accurate Spin-State Energetics of Transition Metal Complexes. 1. CCSD(T), CASPT2, and DFT Study of [M(NCH)6](2+) (M = Fe, Co).

                Bookmark

                Author and article information

                Journal
                10.1039/C6SC03759C

                Comments

                Comment on this article

                scite_

                Similar content286

                Cited by44

                Most referenced authors5,724