17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration.

      Bioactive materials
      Elsevier BV
      Virus, Simulation, Filtration efficiency, Mechanisms, Face masks

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The masks have always been mentioned as an effective tool against environmental threats. They are considered as protective equipment to preserve the respiratory system against the non-desirable air droplets and aerosols such as the viral or pollution particles. The aerosols can be pollution existence in the air, or the infectious airborne viruses initiated from the sneezing, coughing of the infected people. The filtration efficiency of the different masks against these aerosols are not the same, as the particles have different sizes, shapes, and properties. Therefore, the challenge is to fabricate the filtration masks with higher efficiency to decrease the penetration percentage at the nastiest conditions. To achieve this concept, knowledge about the mechanisms of the penetration of the aerosols through the masks at different effective environmental conditions is necessary. In this paper, the literature about the different kinds of face masks and respiratory masks, common cases of their application, and the advantages and disadvantages of them in this regard have been reviewed. Moreover, the related mechanisms of the penetration of the aerosols through the masks are discussed. The environmental conditions affecting the penetration as well as the quality of the fabrication are studied. Finally, special attention was given to the numerical simulation related to the different existing mechanisms.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Respiratory virus shedding in exhaled breath and efficacy of face masks

          We identified seasonal human coronaviruses, influenza viruses and rhinoviruses in exhaled breath and coughs of children and adults with acute respiratory illness. Surgical face masks significantly reduced detection of influenza virus RNA in respiratory droplets and coronavirus RNA in aerosols, with a trend toward reduced detection of coronavirus RNA in respiratory droplets. Our results indicate that surgical face masks could prevent transmission of human coronaviruses and influenza viruses from symptomatic individuals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter

            Significance Exposure to outdoor concentrations of fine particulate matter is considered a leading global health concern, largely based on estimates of excess deaths using information integrating exposure and risk from several particle sources (outdoor and indoor air pollution and passive/active smoking). Such integration requires strong assumptions about equal toxicity per total inhaled dose. We relax these assumptions to build risk models examining exposure and risk information restricted to cohort studies of outdoor air pollution, now covering much of the global concentration range. Our estimates are severalfold larger than previous calculations, suggesting that outdoor particulate air pollution is an even more important population health risk factor than previously thought.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of community-wide wearing of face mask for control of coronavirus disease 2019 (COVID-19) epidemic due to SARS-CoV-2

              Background Face mask usage by the healthy population in the community to reduce risk of transmission of respiratory viruses remains controversial. We assessed the effect of community-wide mask usage to control coronavirus disease 2019 (COVID-19) in Hong Kong Special Administrative Region (HKSAR). Methods Patients presenting with respiratory symptoms at outpatient clinics or hospital wards were screened for COVID-19 per protocol. Epidemiological analysis was performed for confirmed cases, especially persons acquiring COVID-19 during mask-off and mask-on settings. The incidence of COVID-19 per-million-population in HKSAR with community-wide masking was compared to that of non-mask-wearing countries which are comparable with HKSAR in terms of population density, healthcare system, BCG vaccination and social distancing measures but not community-wide masking. Compliance of face mask usage in the HKSAR community was monitored. Findings Within first 100 days (31 December 2019 to 8 April 2020), 961 COVID-19 patients were diagnosed in HKSAR. The COVID-19 incidence in HKSAR (129.0 per-million-population) was significantly lower (p<0.001) than that of Spain (2983.2), Italy (2250.8), Germany (1241.5), France (1151.6), U.S. (1102.8), U.K. (831.5), Singapore (259.8), and South Korea (200.5). The compliance of face mask usage by HKSAR general public was 96.6% (range: 95.7% to 97.2%). We observed 11 COVID-19 clusters in recreational ‘mask-off’ settings compared to only 3 in workplace ‘mask-on’ settings (p = 0.036 by Chi square test of goodness-of-fit). Conclusion Community-wide mask wearing may contribute to the control of COVID-19 by reducing virus shedding in saliva and respiratory droplets from individuals with subclinical or mild COVID-19.
                Bookmark

                Author and article information

                Journal
                32817918
                7426537
                10.1016/j.bioactmat.2020.08.002

                Virus,Simulation,Filtration efficiency,Mechanisms,Face masks

                Comments

                Comment on this article