16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Event-Triggered Machine Learning Approach for Accelerometer-Based Fall Detection

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The fixed-size non-overlapping sliding window (FNSW) and fixed-size overlapping sliding window (FOSW) approaches are the most commonly used data-segmentation techniques in machine learning-based fall detection using accelerometer sensors. However, these techniques do not segment by fall stages (pre-impact, impact, and post-impact) and thus useful information is lost, which may reduce the detection rate of the classifier. Aligning the segment with the fall stage is difficult, as the segment size varies. We propose an event-triggered machine learning (EvenT-ML) approach that aligns each fall stage so that the characteristic features of the fall stages are more easily recognized. To evaluate our approach, two publicly accessible datasets were used. Classification and regression tree (CART), k-nearest neighbor ( k-NN), logistic regression (LR), and the support vector machine (SVM) were used to train the classifiers. EvenT-ML gives classifier F-scores of 98% for a chest-worn sensor and 92% for a waist-worn sensor, and significantly reduces the computational cost compared with the FNSW- and FOSW-based approaches, with reductions of up to 8-fold and 78-fold, respectively. EvenT-ML achieves a significantly better F-score than existing fall detection approaches. These results indicate that aligning feature segments with fall stages significantly increases the detection rate and reduces the computational cost.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Window Size Impact in Human Activity Recognition

          Signal segmentation is a crucial stage in the activity recognition process; however, this has been rarely and vaguely characterized so far. Windowing approaches are normally used for segmentation, but no clear consensus exists on which window size should be preferably employed. In fact, most designs normally rely on figures used in previous works, but with no strict studies that support them. Intuitively, decreasing the window size allows for a faster activity detection, as well as reduced resources and energy needs. On the contrary, large data windows are normally considered for the recognition of complex activities. In this work, we present an extensive study to fairly characterize the windowing procedure, to determine its impact within the activity recognition process and to help clarify some of the habitual assumptions made during the recognition system design. To that end, some of the most widely used activity recognition procedures are evaluated for a wide range of window sizes and activities. From the evaluation, the interval 1–2 s proves to provide the best trade-off between recognition speed and accuracy. The study, specifically intended for on-body activity recognition systems, further provides designers with a set of guidelines devised to facilitate the system definition and configuration according to the particular application requirements and target activities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm.

            Using simulated falls performed under supervised conditions and activities of daily living (ADL) performed by elderly subjects, the ability to discriminate between falls and ADL was investigated using tri-axial accelerometer sensors, mounted on the trunk and thigh. Data analysis was performed using MATLAB to determine the peak accelerations recorded during eight different types of falls. These included; forward falls, backward falls and lateral falls left and right, performed with legs straight and flexed. Falls detection algorithms were devised using thresholding techniques. Falls could be distinguished from ADL for a total data set from 480 movements. This was accomplished using a single threshold determined by the fall-event data-set, applied to the resultant-magnitude acceleration signal from a tri-axial accelerometer located at the trunk.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Evaluation of Accelerometer-Based Fall Detection Algorithms on Real-World Falls

              Despite extensive preventive efforts, falls continue to be a major source of morbidity and mortality among elderly. Real-time detection of falls and their urgent communication to a telecare center may enable rapid medical assistance, thus increasing the sense of security of the elderly and reducing some of the negative consequences of falls. Many different approaches have been explored to automatically detect a fall using inertial sensors. Although previously published algorithms report high sensitivity (SE) and high specificity (SP), they have usually been tested on simulated falls performed by healthy volunteers. We recently collected acceleration data during a number of real-world falls among a patient population with a high-fall-risk as part of the SensAction-AAL European project. The aim of the present study is to benchmark the performance of thirteen published fall-detection algorithms when they are applied to the database of 29 real-world falls. To the best of our knowledge, this is the first systematic comparison of fall detection algorithms tested on real-world falls. We found that the SP average of the thirteen algorithms, was (mean±std) 83.0%±30.3% (maximum value = 98%). The SE was considerably lower (SE = 57.0%±27.3%, maximum value = 82.8%), much lower than the values obtained on simulated falls. The number of false alarms generated by the algorithms during 1-day monitoring of three representative fallers ranged from 3 to 85. The factors that affect the performance of the published algorithms, when they are applied to the real-world falls, are also discussed. These findings indicate the importance of testing fall-detection algorithms in real-life conditions in order to produce more effective automated alarm systems with higher acceptance. Further, the present results support the idea that a large, shared real-world fall database could, potentially, provide an enhanced understanding of the fall process and the information needed to design and evaluate a high-performance fall detector.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                22 December 2017
                January 2018
                : 18
                : 1
                : 20
                Affiliations
                [1 ]School of Engineering, Macquarie University, Sydney 2109, Australia; rein.vesilo@ 123456mq.edu.au
                [2 ]Faculty of Engineering, Environment & Computing, Coventry University, CV1 5FB Coventry, UK; j.brusey@ 123456coventry.ac.uk (J.B.); e.gaura@ 123456coventry.ac.uk (E.G.)
                Author notes
                [* ]Correspondence: edy.putra@ 123456mq.edu.au
                Author information
                https://orcid.org/0000-0002-2710-6927
                https://orcid.org/0000-0003-2943-2037
                Article
                sensors-18-00020
                10.3390/s18010020
                5795925
                29271895
                1813837f-d83a-4884-8ea2-f9e3ba8ea24c
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 November 2017
                : 18 December 2017
                Categories
                Article

                Biomedical engineering
                fall detection,accelerometer sensors,segmentation technique,fall stages,machine learning,computational cost

                Comments

                Comment on this article