27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Rewiring cellular networks by members of the Flaviviridae family

      , , ,
      Nature Reviews Microbiology
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Key Points Flaviviruses and hepaciviruses share similarities in their fundamental replication mechanisms and strategies to manipulate the host cell, yet important differences exist, likely reflecting the use of distinct host cell pathways. RNA replication of Flaviviridae family members occurs in tight association with endoplasmic reticulum-derived membranes, which are reorganized into viral replication organelles. Whereas the morphology and the architecture of these replication organelles are well defined, relatively little is known about the viral and cellular factors orchestrating their biogenesis. Protein folding, modification and degradation are essential, tightly regulated cellular processes, and a number of common host factors and pathways that are involved in these processes appear to be exploited by both flaviviruses and hepaciviruses at different steps of their replication cycle. These include heat shock protein 70 (HSP70) network components, the unfolded protein response, the ubiquitin-dependent proteasome system and autophagy. Accumulating evidence indicates that lipids and lipid metabolism fulfil essential roles in the life cycle of Flaviviridae viruses. They alter the lipid composition of cellular membranes, serving as scaffold for the assembly of the viral replicase by changing their biophysical properties, such as curvature, permeability and fluidity. The identification of host cell pathways and factors commonly used by members of the Flaviviridae family might help in the development of broad-spectrum antiviral drugs that target multiple members of this family and/or other virus families. As exemplified by members of the Flaviviridae family, the use of host cell pathways does not follow conventional phylogeny but, rather, reveals unexpected commonalities with distantly related viruses, raising the question of evolutionary relationships between these viruses. Supplementary information The online version of this article (doi:10.1038/nrmicro.2017.170) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references136

          • Record: found
          • Abstract: found
          • Article: not found

          Autophagy is activated for cell survival after endoplasmic reticulum stress.

          Eukaryotic cells deal with accumulation of unfolded proteins in the endoplasmic reticulum (ER) by the unfolded protein response, involving the induction of molecular chaperones, translational attenuation, and ER-associated degradation, to prevent cell death. Here, we found that the autophagy system is activated as a novel signaling pathway in response to ER stress. Treatment of SK-N-SH neuroblastoma cells with ER stressors markedly induced the formation of autophagosomes, which were recognized at the ultrastructural level. The formation of green fluorescent protein (GFP)-LC3-labeled structures (GFP-LC3 "dots"), representing autophagosomes, was extensively induced in cells exposed to ER stress with conversion from LC3-I to LC3-II. In IRE1-deficient cells or cells treated with c-Jun N-terminal kinase (JNK) inhibitor, the autophagy induced by ER stress was inhibited, indicating that the IRE1-JNK pathway is required for autophagy activation after ER stress. In contrast, PERK-deficient cells and ATF6 knockdown cells showed that autophagy was induced after ER stress in a manner similar to the wild-type cells. Disturbance of autophagy rendered cells vulnerable to ER stress, suggesting that autophagy plays important roles in cell survival after ER stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Composition and Three-Dimensional Architecture of the Dengue Virus Replication and Assembly Sites

            Summary Positive-strand RNA viruses are known to rearrange cellular membranes to facilitate viral genome replication. The biogenesis and three-dimensional organization of these membranes and the link between replication and virus assembly sites is not fully clear. Using electron microscopy, we find Dengue virus (DENV)-induced vesicles, convoluted membranes, and virus particles to be endoplasmic reticulum (ER)-derived, and we detect double-stranded RNA, a presumed marker of RNA replication, inside virus-induced vesicles. Electron tomography (ET) shows DENV-induced membrane structures to be part of one ER-derived network. Furthermore, ET reveals vesicle pores that could enable release of newly synthesized viral RNA and reveals budding of DENV particles on ER membranes directly apposed to vesicle pores. Thus, DENV modifies ER membrane structure to promote replication and efficient encapsidation of the genome into progeny virus. This architecture of DENV replication and assembly sites could explain the coordination of distinct steps of the flavivirus replication cycle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease.

              A candidate tetravalent dengue vaccine is being assessed in three clinical trials involving more than 35,000 children between the ages of 2 and 16 years in Asian-Pacific and Latin American countries. We report the results of long-term follow-up interim analyses and integrated efficacy analyses.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Microbiology
                Nat Rev Micro
                Springer Nature
                1740-1526
                1740-1534
                February 12 2018
                February 12 2018
                : 16
                : 3
                : 125-142
                Article
                10.1038/nrmicro.2017.170
                bfea540a-fcae-4f55-914f-b8044a3b6935
                © 2018
                History

                Comments

                Comment on this article