405
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Structure and Function of Complex Networks

      SIAM Review
      Society for Industrial & Applied Mathematics (SIAM)

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references290

          • Record: found
          • Abstract: found
          • Article: not found

          Collective dynamics of 'small-world' networks.

          Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emergence of Scaling in Random Networks

            Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Matthew Effect in Science: The reward and communication systems of science are considered.

              R K Merton (1968)
              This account of the Matthew effect is another small exercise in the psychosociological analysis of the workings of science as a social institution. The initial problem is transformed by a shift in theoretical perspective. As originally identified, the Matthew effect was construed in terms of enhancement of the position of already eminent scientists who are given disproportionate credit in cases of collaboration or of independent multiple discoveries. Its significance was thus confined to its implications for the reward system of science. By shifting the angle of vision, we note other possible kinds of consequences, this time for the communication system of science. The Matthew effect may serve to heighten the visibility of contributions to science by scientists of acknowledged standing and to reduce the visibility of contributions by authors who are less well known. We examine the psychosocial conditions and mechanisms underlying this effect and find a correlation between the redundancy function of multiple discoveries and the focalizing function of eminent men of science-a function which is reinforced by the great value these men place upon finding basic problems and by their self-assurance. This self-assurance, which is partly inherent, partly the result of experiences and associations in creative scientific environments, and partly a result of later social validation of their position, encourages them to search out risky but important problems and to highlight the results of their inquiry. A macrosocial version of the Matthew principle is apparently involved in those processes of social selection that currently lead to the concentration of scientific resources and talent (50).
                Bookmark

                Author and article information

                Journal
                SIAM Review
                SIAM Rev.
                Society for Industrial & Applied Mathematics (SIAM)
                0036-1445
                1095-7200
                January 2003
                January 2003
                : 45
                : 2
                : 167-256
                Article
                10.1137/S003614450342480
                561cea78-7784-4b69-933f-6a6014b4688f
                © 2003
                History

                Comments

                Comment on this article