36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Imaging Cerebral Activity in Amyotrophic Lateral Sclerosis

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advances in neuroimaging, complementing histopathological insights, have established a multi-system involvement of cerebral networks beyond the traditional neuromuscular pathological view of amyotrophic lateral sclerosis (ALS). The development of effective disease-modifying therapy remains a priority and this will be facilitated by improved biomarkers of motor system integrity against which to assess the efficacy of candidate drugs. Functional MRI (FMRI) is an established measure of both cerebral activity and connectivity, but there is an increasing recognition of neuronal oscillations in facilitating long-distance communication across the cortical surface. Such dynamic synchronization vastly expands the connectivity foundations defined by traditional neuronal architecture. This review considers the unique pathogenic insights afforded by the capture of cerebral disease activity in ALS using FMRI and encephalography.

          Related collections

          Most cited references144

          • Record: found
          • Abstract: found
          • Article: found

          Moving magnetoencephalography towards real-world applications with a wearable system

          Summary Imaging human brain function with techniques such as magnetoencephalography1 (MEG) typically requires a subject to perform tasks whilst their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or in adult studies that require unconstrained head movement (e.g. spatial navigation). Here, we develop a new type of MEG system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible due to the integration of new quantum sensors2,3 that do not rely on superconducting technology, with a novel system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution whilst subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Results compare well to the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterisation of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment, and understanding the pathophysiology of movement disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EEG and MEG: relevance to neuroscience.

            To understand dynamic cognitive processes, the high time resolution of EEG/MEG is invaluable. EEG/MEG signals can play an important role in providing measures of functional and effective connectivity in the brain. After a brief description of the foundations and basic methodological aspects of EEG/MEG signals, the relevance of the signals to obtain novel insights into the neuronal mechanisms underlying cognitive processes is surveyed, with emphasis on neuronal oscillations (ultra-slow, theta, alpha, beta, gamma, and HFOs) and combinations of oscillations. Three main functional roles of brain oscillations are put in evidence: (1) coding specific information, (2) setting and modulating brain attentional states, and (3) assuring the communication between neuronal populations such that specific dynamic workspaces may be created. The latter form the material core of cognitive functions. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis.

              Familial amyotrophic lateral sclerosis (FALS) is an inherited neurodegenerative disorder of the motor neurons. While 10-15% of cases are caused by mutations in the copper/zinc superoxide-dismutase-1 (SOD-1) gene, the dying-forward hypothesis, in which corticomotoneurons induce anterograde excitotoxic motoneuron degeneration, has been proposed as a potential mechanism. The present study applied novel threshold tracking transcranial magnetic stimulation techniques to investigate the mechanisms underlying neurodegeneration in FALS. Studies were undertaken in 14 asymptomatic and 3 pre-symptomatic SOD-1 mutation carriers, followed longitudinally for up to 3-years. The pre-symptomatic subjects were asymptomatic at the time of their initial study but developed symptoms during the follow-up period. Results were compared to 7 SOD-1 FALS patients, 50 sporadic ALS patients and 55 normal controls. Short-interval intracortical inhibition (SICI) was significantly reduced in SOD-1 FALS (-1.2 +/- 0.6%) and sporadic ALS patients (-0.7 +/- 0.3%) compared to asymptomatic SOD-1 mutation carriers (9.8 +/- 1.5%, P<0.00001) and normal controls (8.5 +/- 1.0%, P<0.00001). SICI reduction was accompanied by increases in intracortical facilitation, motor evoked potential amplitudes and the slope of the magnetic stimulus-response curve. In two pre-symptomatic SOD-1 mutation carriers SICI was completely absent (SICI patient 1, -3.2%; patients 2, -1.3%), while in one subject there was a 32% reduction in SICI prior to symptom onset. These three individuals subsequently developed clinical features of ALS. Simultaneous investigation of central and peripheral excitability has established that cortical hyperexcitability develops in clinically affected SOD-1 FALS patients, similar to that seen in sporadic ALS patients, thereby suggesting that a similar pathophysiological process in evident in both familial and sporadic ALS patients. In addition, the present study has established that cortical hyperexcitability precedes the development of clinical symptoms in pre-symptomatic carriers of the SOD1 mutation, thereby suggesting that cortical hyperexcitability underlies neurodegeneration in FALS.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                08 January 2019
                2018
                : 9
                : 1148
                Affiliations
                [1] 1Nuffield Department of Clinical Neurosciences, University of Oxford , Oxford, United Kingdom
                [2] 2Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin , Dublin, Ireland
                [3] 3Wellcome Centre for Integrative Neuroimaging, University of Oxford , Oxford, United Kingdom
                Author notes

                Edited by: Francesca Trojsi, Università Degli Studi Della Campania “Luigi Vanvitelli” Naples, Italy

                Reviewed by: Edoardo Gioele Spinelli, Vita-Salute San Raffaele University, Italy; Rodolfo Gabriel Gatto, University of Illinois at Chicago, United States

                *Correspondence: Martin R. Turner martin.turner@ 123456ndcn.ox.ac.uk

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2018.01148
                6332509
                54984f70-5b2f-4e52-af9e-f2cd97f611a7
                Copyright © 2019 Proudfoot, Bede and Turner.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 October 2018
                : 11 December 2018
                Page count
                Figures: 0, Tables: 2, Equations: 0, References: 167, Pages: 13, Words: 11003
                Funding
                Funded by: Health Research Board 10.13039/100010414
                Funded by: Irish Institute of Clinical Neuroscience 10.13039/501100003840
                Funded by: Iris O'Brien Foundation 10.13039/100013029
                Categories
                Neurology
                Mini Review

                Neurology
                amyotrophic lateral sclerosis,motor neurone disease,biomarker,neuroimaging,neurophysiology,cortex

                Comments

                Comment on this article