64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      H9N2 influenza virus in China: a cause of concern

      research-article
      ,
      Protein & Cell
      Higher Education Press
      Influenza, Poultry, H9N2, Evolution, Virulence, Antigenic drift

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The recent human infection with avian influenza virus revealed that H9N2 influenza virus is the gene donor for H7N9 and H10N8 viruses infecting humans. The crucial role of H9N2 viruses at the animal-human interface might be due to the wide host range, adaptation in both poultry and mammalian, and extensive gene reassortment. As the most prevalent subtype of influenza viruses in chickens in China, H9N2 also causes a great economic loss for the poultry industry, even under the long-term vaccination programs. The history, epidemiology, biological characteristics, and molecular determinants of H9N2 influenza virus are reviewed in this paper. The contribution of H9N2 genes, especially RNP genes, to the infection of humans needs to be investigated in the future.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Cocirculation of avian H9N2 and contemporary "human" H3N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment?

          Pigs are permissive to both human and avian influenza viruses and have been proposed to be an intermediate host for the genesis of pandemic influenza viruses through reassortment or adaptation of avian viruses. Prospective virological surveillance carried out between March 1998 and June 2000 in Hong Kong, Special Administrative Region, People's Republic of China, on pigs imported from southeastern China, provides the first evidence of interspecies transmission of avian H9N2 viruses to pigs and documents their cocirculation with contemporary human H3N2 (A/Sydney/5/97-like, Sydney97-like) viruses. All gene segments of the porcine H9N2 viruses were closely related to viruses similar to chicken/Beijing/1/94 (H9N2), duck/Hong Kong/Y280/97 (H9N2), and the descendants of the latter virus lineage. Phylogenetic analysis suggested that repeated interspecies transmission events had occurred from the avian host to pigs. The Sydney97-like (H3N2) viruses isolated from pigs were related closely to contemporary human H3N2 viruses in all gene segments and had not undergone genetic reassortment. Cocirculation of avian H9N2 and human H3N2 viruses in pigs provides an opportunity for genetic reassortment leading to the emergence of viruses with pandemic potential.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs.

            The three-dimensional structures of avian H5 and swine H9 influenza hemagglutinins (HAs) from viruses closely related to those that caused outbreaks of human disease in Hong Kong in 1997 and 1999 were determined bound to avian and human cell receptor analogs. Emerging influenza pandemics have been accompanied by the evolution of receptor-binding specificity from the preference of avian viruses for sialic acid receptors in alpha2,3 linkage to the preference of human viruses for alpha2,6 linkages. The four new structures show that HA binding sites specific for human receptors appear to be wider than those preferring avian receptors and how avian and human receptors are distinguished by atomic contacts at the glycosidic linkage. alpha2,3-Linked sialosides bind the avian HA in a trans conformation to form an alpha2,3 linkage-specific motif, made by the glycosidic oxygen and 4-OH of the penultimate galactose, that is complementary to the hydrogen-bonding capacity of Gln-226, an avian-specific residue. alpha2,6-Linked sialosides bind in a cis conformation, exposing the glycosidic oxygen to solution and nonpolar atoms of the receptor to Leu-226, a human-specific residue. The new structures are compared with previously reported crystal structures of HA/sialoside complexes of the H3 subtype that caused the 1968 Hong Kong Influenza virus pandemic and analyzed in relation to HA sequences of all 15 subtypes and to receptor affinity data to make clearer how receptor-binding sites of HAs from avian viruses evolve as the virus adapts to humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolution of H9N2 influenza viruses from domestic poultry in Mainland China.

              H9N2 viruses have circulated in domestic poultry in Mainland China since 1994, and an inactivated vaccine has been used in chickens to control the disease since 1998. The present study analyzed 27 H9N2 avian influenza viruses that were isolated from chickens and ducks from 1996 to 2002. Infection studies indicated that most of the viruses replicate efficiently but none of them is lethal for SPF chickens. However, these viruses exhibit different phenotypes of replication in a mouse model. Five viruses, including 4 early isolates and one 2000 isolate, are not able to replicate in mice; 14 viruses replicate to moderate titers in mouse lungs and cause less than 5% weight loss, while other 8 viruses could replicate to high titers in the lungs and 7 of them induce 10-20% weight loss of the mice on day 5 after inoculation. Most of the viruses isolated after 1996 are antigenically different from the vaccine strain that is currently used in China. Three viruses isolated in central China in 1998 are resistant to adamantanes. Phylogenetic analysis revealed that all of the viruses originated from CK/BJ/1/94-like virus and formed multiple genotypes through complicated reassortment with QA/HK/G1/97-, CK/HK/G9/97-, CK/SH/F/98-, and TY/WI/66-like viruses. This study is a description of the previously uncharacterized H9N2 avian influenza viruses recently circulating in chickens and ducks in Mainland China. Our findings suggest that urgent attention should be paid to the control of H9N2 influenza viruses in animals and to the human's influenza pandemic preparedness.
                Bookmark

                Author and article information

                Contributors
                ljh@cau.edu.cn
                Journal
                Protein Cell
                Protein Cell
                Protein & Cell
                Higher Education Press (Heidelberg )
                1674-800X
                1674-8018
                11 November 2014
                11 November 2014
                January 2015
                : 6
                : 1
                : 18-25
                Affiliations
                Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100083 China
                Article
                111
                10.1007/s13238-014-0111-7
                4286136
                25384439
                fbb41e30-2039-436e-abaf-52205a644311
                © The Author(s) 2014

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                : 1 September 2014
                : 30 September 2014
                Categories
                Review
                Custom metadata
                © HEP and Springer 2015

                influenza,poultry,h9n2,evolution,virulence,antigenic drift
                influenza, poultry, h9n2, evolution, virulence, antigenic drift

                Comments

                Comment on this article