104
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Strength of adhesive contacts: Influence of contact geometry and material gradients

      , ,
      Friction
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The strength of an adhesive contact between two bodies can strongly depend on the macroscopic and microscopic shape of the surfaces. In the past, the influence of roughness has been investigated thoroughly. However, even in the presence of perfectly smooth surfaces, geometry can come into play in form of the macroscopic shape of the contacting region. Here we present numerical and experimental results for contacts of rigid punches with flat but oddly shaped face contacting a soft, adhesive counterpart. When it is carefully pulled off, we find that in contrast to circular shapes, detachment occurs not instantaneously but detachment fronts start at pointed corners and travel inwards, until the final configuration is reached which for macroscopically isotropic shapes is almost circular. For elongated indenters, the final shape resembles the original one with rounded corners. We describe the influence of the shape of the stamp both experimentally and numerically. Numerical simulations are performed using a new formulation of the boundary element method for simulation of adhesive contacts suggested by Pohrt and Popov. It is based on a local, mesh dependent detachment criterion which is derived from the Griffith principle of balance of released elastic energy and the work of adhesion. The validation of the suggested method is made both by comparison with known analytical solutions and with experiments. The method is applied for simulating the detachment of flat-ended indenters with square, triangle or rectangular shape of cross-section as well as shapes with various kinds of faults and to “brushes”. The method is extended for describing power-law gradient media.

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          The Phenomena of Rupture and Flow in Solids

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The adhesion and surface energy of elastic solids

            K Kendall (1971)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The breakdown of continuum models for mechanical contacts.

              Forces acting within the area of atomic contact between surfaces play a central role in friction and adhesion. Such forces are traditionally calculated using continuum contact mechanics, which is known to break down as the contact radius approaches atomic dimensions. Yet contact mechanics is being applied at ever smaller lengths, driven by interest in shrinking devices to nanometre scales, creating nanostructured materials with optimized mechanical properties, and understanding the molecular origins of macroscopic friction and adhesion. Here we use molecular simulations to test the limits of contact mechanics under ideal conditions. Our findings indicate that atomic discreteness within the bulk of the solids does not have a significant effect, but that the atomic-scale surface roughness that is always produced by discrete atoms leads to dramatic deviations from continuum theory. Contact areas and stresses may be changed by a factor of two, whereas friction and lateral contact stiffness change by an order of magnitude. These variations are likely to affect continuum predictions for many macroscopic rough surfaces, where studies show that the total contact area is broken up into many separate regions with very small mean radius.
                Bookmark

                Author and article information

                Journal
                Friction
                Friction
                Springer Nature
                2223-7690
                2223-7704
                September 2017
                September 6 2017
                September 2017
                : 5
                : 3
                : 308-325
                Article
                10.1007/s40544-017-0177-3
                1c0a9b72-a74f-496c-81e1-5f2ce7103b30
                © 2017

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article