32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines

      Nature medicine
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Telomere elongation in immortal human cells without detectable telomerase activity.

          Immortalization of human cells is often associated with reactivation of telomerase, a ribonucleoprotein enzyme that adds TTAGGG repeats onto telomeres and compensates for their shortening. We examined whether telomerase activation is necessary for immortalization. All normal human fibroblasts tested were negative for telomerase activity. Thirteen out of 13 DNA tumor virus-transformed cell cultures were also negative in the pre-crisis (i.e. non-immortalized) stage. Of 35 immortalized cell lines, 20 had telomerase activity as expected, but 15 had no detectable telomerase. The 15 telomerase-negative immortalized cell lines all had very long and heterogeneous telomeres of up to 50 kb. Hybrids between telomerase-negative and telomerase-positive cells senesced. Two senescent hybrids demonstrated telomerase activity, indicating that activation of telomerase is not sufficient for immortalization. Some hybrid clones subsequently recommenced proliferation and became immortalized either with or without telomerase activity. Those without telomerase activity also had very long and heterogeneous telomeres. Taken together, these data suggest that the presence of lengthened or stabilized telomeres is necessary for immortalization, and that this may be achieved either by the reactivation of telomerase or by a novel and as yet unidentified mechanism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity.

            Loss of telomeric DNA during cell proliferation may play a role in ageing and cancer. Since telomeres permit complete replication of eukaryotic chromosomes and protect their ends from recombination, we have measured telomere length, telomerase activity and chromosome rearrangements in human cells before and after transformation with SV40 or Ad5. In all mortal populations, telomeres shortened by approximately 65 bp/generation during the lifespan of the cultures. When transformed cells reached crisis, the length of the telomeric TTAGGG repeats was only approximately 1.5 kbp and many dicentric chromosomes were observed. In immortal cells, telomere length and frequency of dicentric chromosomes stabilized after crisis. Telomerase activity was not detectable in control or extended lifespan populations but was present in immortal populations. These results suggest that chromosomes with short (TTAGGG)n tracts are recombinogenic, critically shortened telomeres may be incompatible with cell proliferation and stabilization of telomere length by telomerase may be required for immortalization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An alternative pathway for yeast telomere maintenance rescues est1- senescence.

              Yeast cells lacking a functional EST1 gene show progressive shortening of the terminal G1-3T telomeric repeats and a parallel increase in the frequency of cell death. Although the majority of the cells in an est1- culture die, a minor subpopulation survives the potentially lethal consequences of the est1 mutation. We show that these est1- survivors arise as a result of the amplification and acquisition of subtelomeric elements (and their deletion derivatives) by a large number of telomeres. Hence, even when the primary pathway for telomere replication is defective, an alternative backup pathway can restore telomere function and keep the cell alive.
                Bookmark

                Author and article information

                Journal
                10.1038/nm1197-1271
                http://www.springer.com/tdm

                Comments

                Comment on this article