35
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Ketamine for the treatment of addiction: Evidence and potential mechanisms

      , , ,
      Neuropharmacology
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d105321e99">Ketamine is a dissociative anaesthetic drug which acts on the central nervous system chiefly through antagonism of the n-methyl-d-aspartate (NMDA) receptor. Recently, ketamine has attracted attention as a rapid-acting anti-depressant but other studies have also reported its efficacy in reducing problematic alcohol and drug use. This review explores the preclinical and clinical research into ketamine's ability to treat addiction. Despite methodological limitations and the relative infancy of the field, results thus far are promising. Ketamine has been shown to effectively prolong abstinence from alcohol and heroin in detoxified alcoholics and heroin dependent individuals, respectively. Moreover, ketamine reduced craving for and self-administration of cocaine in non-treatment seeking cocaine users. However, further randomised controlled trials are urgently needed to confirm ketamine's efficacy. Possible mechanisms by which ketamine may work within addiction include: enhancement of neuroplasticity and neurogenesis, disruption of relevant functional neural networks, treating depressive symptoms, blocking reconsolidation of drug-related memories, provoking mystical experiences and enhancing psychological therapy efficacy. Identifying the mechanisms by which ketamine exerts its therapeutic effects in addiction, from the many possible candidates, is crucial for advancing this treatment and may have broader implications understanding other psychedelic therapies. In conclusion, ketamine shows great promise as a treatment for various addictions, but well-controlled research is urgently needed. This article is part of the Special Issue entitled 'Psychedelics: New Doors, Altered Perceptions'. </p>

          Related collections

          Most cited references141

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms and functional implications of adult neurogenesis.

          The generation of new neurons is sustained throughout adulthood in the mammalian brain due to the proliferation and differentiation of adult neural stem cells. In this review, we discuss the factors that regulate proliferation and fate determination of adult neural stem cells and describe recent studies concerning the integration of newborn neurons into the existing neural circuitry. We further address the potential significance of adult neurogenesis in memory, depression, and neurodegenerative disorders such as Alzheimer's and Parkinson's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NMDA Receptor Blockade at Rest Triggers Rapid Behavioural Antidepressant Responses

            Clinical studies consistently demonstrate that a single sub-psychomimetic dose of ketamine, an ionotropic glutamatergic n-methyl-d-aspartate receptor (NMDAR) antagonist, produces fast-acting antidepressant responses in patients suffering from major depressive disorder (MDD), although the underlying mechanism is unclear 1-3 . Depressed patients report alleviation of MDD symptoms within two hours of a single low-dose intravenous infusion of ketamine with effects lasting up to two weeks 1-3 , unlike traditional antidepressants (i.e. serotonin reuptake inhibitors), which take weeks to reach efficacy. This delay is a major drawback to current MDD therapies, leaving a need for faster acting antidepressants particularly for suicide-risk patients 3 . Ketamine's ability to produce rapidly acting, long-lasting antidepressant responses in depressed patients provides a unique opportunity to investigate underlying cellular mechanisms. We show that ketamine and other NMDAR antagonists produce fast-acting behavioural antidepressant-like effects in mouse models that depend on rapid synthesis of brain-derived neurotrophic factor (BDNF). We find that ketamine-mediated NMDAR blockade at rest deactivates eukaryotic elongation factor 2 (eEF2) kinase (also called CaMKIII) resulting in reduced eEF2 phosphorylation and desuppression of BDNF translation. Furthermore, we find inhibitors of eEF2 kinase induce fast-acting behavioural antidepressant-like effects. Our findings suggest that protein synthesis regulation by spontaneous neurotransmission may serve as a viable therapeutic target for fast-acting antidepressant development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurocircuitry of addiction.

              Drug addiction is a chronically relapsing disorder that has been characterized by (1) compulsion to seek and take the drug, (2) loss of control in limiting intake, and (3) emergence of a negative emotional state (eg, dysphoria, anxiety, irritability) reflecting a motivational withdrawal syndrome when access to the drug is prevented. Drug addiction has been conceptualized as a disorder that involves elements of both impulsivity and compulsivity that yield a composite addiction cycle composed of three stages: 'binge/intoxication', 'withdrawal/negative affect', and 'preoccupation/anticipation' (craving). Animal and human imaging studies have revealed discrete circuits that mediate the three stages of the addiction cycle with key elements of the ventral tegmental area and ventral striatum as a focal point for the binge/intoxication stage, a key role for the extended amygdala in the withdrawal/negative affect stage, and a key role in the preoccupation/anticipation stage for a widely distributed network involving the orbitofrontal cortex-dorsal striatum, prefrontal cortex, basolateral amygdala, hippocampus, and insula involved in craving and the cingulate gyrus, dorsolateral prefrontal, and inferior frontal cortices in disrupted inhibitory control. The transition to addiction involves neuroplasticity in all of these structures that may begin with changes in the mesolimbic dopamine system and a cascade of neuroadaptations from the ventral striatum to dorsal striatum and orbitofrontal cortex and eventually dysregulation of the prefrontal cortex, cingulate gyrus, and extended amygdala. The delineation of the neurocircuitry of the evolving stages of the addiction syndrome forms a heuristic basis for the search for the molecular, genetic, and neuropharmacological neuroadaptations that are key to vulnerability for developing and maintaining addiction.
                Bookmark

                Author and article information

                Journal
                Neuropharmacology
                Neuropharmacology
                Elsevier BV
                00283908
                November 2018
                November 2018
                : 142
                : 72-82
                Article
                10.1016/j.neuropharm.2018.01.017
                2b9251d0-0116-4e23-b7ee-1d927118cd67
                © 2018

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article