23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice that cognitive challenge induces local/endogenous hypoxia in hippocampal pyramidal neurons, hence enhancing expression of EPO and EPO receptor (EPOR). High-dose EPO administration, amplifying auto/paracrine EPO/EPOR signaling, prompts the emergence of new CA1 neurons and enhanced dendritic spine densities. Single-cell sequencing reveals rapid increase in newly differentiating neurons. Importantly, improved performance on complex running wheels after EPO is imitated by exposure to mild exogenous/inspiratory hypoxia. All these effects depend on neuronal expression of the Epor gene. This suggests a model of neuroplasticity in form of a fundamental regulatory circle, in which neuronal networks—challenged by cognitive tasks—drift into transient hypoxia, thereby triggering neuronal EPO/EPOR expression.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1.

          Hypoxia-inducible factor 1 (HIF-1) activates transcription of genes encoding angiogenic growth factors, which are secreted by hypoxic cells and stimulate endothelial cells, leading to angiogenesis. To determine whether HIF-1 also mediates cell-autonomous responses to hypoxia, we have compared gene expression profiles in arterial endothelial cells cultured under nonhypoxic versus hypoxic conditions and in nonhypoxic cells infected with adenovirus encoding beta-galactosidase versus a constitutively active form of HIF-1alpha (AdCA5). There were 245 gene probes that showed at least 1.5-fold increase in expression in response to hypoxia and in response to AdCA5; 325 gene probes showed at least 1.5-fold decrease in expression in response to hypoxia and in response to AdCA5. The largest category of genes down-regulated by both hypoxia and AdCA5 encoded proteins involved in cell growth/proliferation. Many genes up-regulated by both hypoxia and AdCA5 encoded cytokines/growth factors, receptors, and other signaling proteins. Transcription factors accounted for the largest group of HIF-1-regulated genes, indicating that HIF-1 controls a network of transcriptional responses to hypoxia in endothelial cells. Infection of endothelial cells with AdCA5 under nonhypoxic conditions was sufficient to induce increased basement membrane invasion and tube formation similar to the responses induced by hypoxia, indicating that HIF-1 mediates cell-autonomous activation of endothelial cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Corridors of Migrating Neurons in Human Brain and Their Decline during Infancy

            The subventricular zone (SVZ) of many adult non-human mammals generates large numbers of new neurons destined for the olfactory bulb (OB) 1–6 . Along the walls of the lateral ventricles, immature neuronal progeny migrate in tangentially-oriented chains that coalesce into a rostral migratory stream (RMS) connecting the SVZ to the OB. The adult human SVZ, in contrast, contains a hypocellular gap layer separating the ependymal lining from a periventricular ribbon of astrocytes 7 . Some of these SVZ astrocytes can function as neural stem cells in vitro, but their function in vivo remains controversial. An initial report finds few SVZ proliferating cells and rare migrating immature neurons in the RMS of adult humans 7 . In contrast, a subsequent study indicates robust proliferation and migration in the human SVZ and RMS 8,9 . Here, we find that the infant human SVZ and RMS contain an extensive corridor of migrating immature neurons before 18 months of age, but, contrary to previous reports 8 , this germinal activity subsides in older children and is nearly extinct by adulthood. Surprisingly, during this limited window of neurogenesis, not all new neurons in the human SVZ are destined for the OB – we describe a major migratory pathway that targets the prefrontal cortex in humans. Together, these findings reveal robust streams of tangentially migrating immature neurons in human early postnatal SVZ and cortex. These pathways represent potential targets of neurological injuries affecting neonates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural dynamics of dendritic spines in memory and cognition.

              Recent studies show that dendritic spines are dynamic structures. Their rapid creation, destruction and shape-changing are essential for short- and long-term plasticity at excitatory synapses on pyramidal neurons in the cerebral cortex. The onset of long-term potentiation, spine-volume growth and an increase in receptor trafficking are coincident, enabling a 'functional readout' of spine structure that links the age, size, strength and lifetime of a synapse. Spine dynamics are also implicated in long-term memory and cognition: intrinsic fluctuations in volume can explain synapse maintenance over long periods, and rapid, activity-triggered plasticity can relate directly to cognitive processes. Thus, spine dynamics are cellular phenomena with important implications for cognition and memory. Furthermore, impaired spine dynamics can cause psychiatric and neurodevelopmental disorders. Copyright 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nature Communications
                Nat Commun
                Springer Science and Business Media LLC
                2041-1723
                December 2020
                March 9 2020
                December 2020
                : 11
                : 1
                Article
                10.1038/s41467-020-15041-1
                b3a3eff1-cd7c-4a9d-a660-572d55ffe713
                © 2020

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article