37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sex Hormones Determine Immune Response.

      Frontiers in Immunology
      Frontiers Media S.A.
      sex hormones, immune system, autoimmune diseases, X-linked genetic disease, TLRs (toll-like receptors)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Hormonal and immunological mechanisms mediating sex differences in parasite infection.

          S L Klein (2004)
          The prevalence and intensity of infections caused by protozoa, nematodes, trematodes, cestodes, and arthropods is higher in males than females. The primary thesis of this review is that immunological differences exist between the sexes that may underlie increased parasitism in males compared to females. Several field and laboratory studies link sex differences in immune function with circulating steroid hormones; thus, the roles of sex steroids, including testosterone, oestradiol, and progesterone, as well as glucocorticoids will be discussed. Not only can host hormones affect responses to infection, but parasites can both produce and alter hormone concentrations in their hosts. The extent to which changes in endocrine-immune interactions following infection are mediated by the host or the parasite will be considered. Although males are more susceptible than females to many parasites, there are parasites for which males are more resistant than females and endocrine-immune interactions may underlie this sex reversal. Finally, although immunological differences exist between the sexes, genetic and behavioural differences may explain some variability in response to infection and will be explored as alternative hypotheses for how differences between the sexes contribute to dimorphic responses to parasites.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impact of smoking as a risk factor for developing rheumatoid arthritis: a meta-analysis of observational studies.

            To assess whether smoking is a risk factor for developing rheumatoid arthritis (RA). Meta-analysis. were observational studies that examined the association between smoking history and the risk of developing RA identified through Medline and EMBASE (from 1966 to December 2006), relevant books and a reference search. Two authors independently extracted the following: authors' names, publication year, sample size, participant characteristics, odds ratios (OR) or relative risks, adjustment factors, study design and area where the study was conducted. Data syntheses were based upon random effects model. Summarised syntheses effects were expressed by OR. Sixteen studies were selected from among 433 articles. For men, summary OR for ever, current and past smokers were 1.89 (95% CI 1.56 to 2.28), 1.87 (1.49 to 2.34) and 1.76 (1.33 to 2.31), respectively. For rheumatoid factor-positive (RF+) RA, summary OR for ever, current and past smokers were 3.02 (2.35 to 3.88), 3.91 (2.78 to 5.50) and 2.46 (1.74 to 3.47), respectively. Summary OR for 20 or more pack-years of smoking was 2.31 (1.55 to 3.41). For women, summary OR for ever, current and past smokers were 1.27 (1.12 to 1.44), 1.31 (1.12 to 1.54) and 1.22 (1.06 to 1.40), respectively. For RF+ RA, summary OR for ever, current and past smokers were 1.34 (0.99 to 1.80), 1.29 (0.94 to 1.77) and 1.21 (0.83 to 1.77). Summary OR for 20 or more pack-years of smoking was 1.75 (1.52 to 2.02). Smoking is a risk factor for RA, especially RF+ RA men and heavy smokers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effects of hormones on sex differences in infection: from genes to behavior.

              S L Klein (2000)
              Males of many species are more susceptible than females to infections caused by parasites, fungi, bacteria, and viruses. One proximate cause of sex differences in infection is differences in endocrine-immune interactions. Specifically, males may be more susceptible to infection than females because sex steroids, specifically androgens in males and estrogens in females, modulate several aspects of host immunity. It is, however, becoming increasingly more apparent that in addition to affecting host immunity, sex steroid hormones alter genes and behaviors that influence susceptibility and resistance to infection. Thus, males may be more susceptible to infection than females not only because androgens reduce immunocompetence, but because sex steroid hormones affect disease resistance genes and behaviors that make males more susceptible to infection. Consideration of the cumulative effects of sex steroid hormones on susceptibility to infection may serve to clarify current discrepancies in the literature and offer alternative hypotheses to the view that sex steroid hormones only alter susceptibility to infection via changes in host immune function.
                Bookmark

                Author and article information

                Journal
                30210492
                6119719
                10.3389/fimmu.2018.01931

                sex hormones,immune system,autoimmune diseases,X-linked genetic disease,TLRs (toll-like receptors)

                Comments

                Comment on this article