273
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      An aspartyl protease directs malaria effector proteins to the host cell

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plasmodium falciparum causes the virulent form of malaria and disease manifestations are linked to growth inside infected erythrocytes. In order to survive and evade host responses the parasite remodels the erythrocyte by exporting several hundred effector proteins beyond the surrounding parasitophorous vacuole membrane. A feature of exported proteins is a pentameric motif (RxLxE/Q/D) that is a substrate for an unknown protease. Here, we show the protein responsible for cleavage of this motif is Plasmepsin V, an aspartic acid protease located in the endoplasmic reticulum. Plasmepsin V cleavage reveals the export signal (xE/Q/D) at the N-terminus of cargo proteins. Expression of an identical mature protein with xQ at the N-terminus generated by signal peptidase was not exported demonstrating Plasmepsin V activity is essential and linked with other key export events. Identification of the protease responsible for export into erythrocytes provides a novel target for therapeutic intervention against this devastating disease.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          The global distribution of clinical episodes of Plasmodium falciparum malaria.

          Interest in mapping the global distribution of malaria is motivated by a need to define populations at risk for appropriate resource allocation and to provide a robust framework for evaluating its global economic impact. Comparison of older and more recent malaria maps shows how the disease has been geographically restricted, but it remains entrenched in poor areas of the world with climates suitable for transmission. Here we provide an empirical approach to estimating the number of clinical events caused by Plasmodium falciparum worldwide, by using a combination of epidemiological, geographical and demographic data. We estimate that there were 515 (range 300-660) million episodes of clinical P. falciparum malaria in 2002. These global estimates are up to 50% higher than those reported by the World Health Organization (WHO) and 200% higher for areas outside Africa, reflecting the WHO's reliance upon passive national reporting for these countries. Without an informed understanding of the cartography of malaria risk, the global extent of clinical disease caused by P. falciparum will continue to be underestimated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Discovery of gene function by expression profiling of the malaria parasite life cycle.

            The completion of the genome sequence for Plasmodium falciparum, the species responsible for most malaria human deaths, has the potential to reveal hundreds of new drug targets and proteins involved in pathogenesis. However, only approximately 35% of the genes code for proteins with an identifiable function. The absence of routine genetic tools for studying Plasmodium parasites suggests that this number is unlikely to change quickly if conventional serial methods are used to characterize encoded proteins. Here, we use a high-density oligonucleotide array to generate expression profiles of human and mosquito stages of the malaria parasite's life cycle. Genes with highly correlated levels and temporal patterns of expression were often involved in similar functions or cellular processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Comparative genomics of the neglected human malaria parasite Plasmodium vivax.

              The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                0028-0836
                1476-4687
                23 December 2009
                4 February 2010
                4 August 2010
                : 463
                : 7281
                : 627-631
                Affiliations
                [1 ] The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
                [2 ] MacfarlaneBurnet Institute for Medical Research & Public Health, Melbourne 3004, Australia
                [3 ] Joint Proteomics Facility, Ludwig Institute for Cancer Research, Melbourne 3050, Australia. Deakin University, Waurn Ponds, 3217, Australia
                [4 ] Deakin University, Waurn Ponds, 3217, Australia
                Author notes
                Correspondence to: Alan Cowman, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3001, Australia, cowman@ 123456wehi.edu.au
                Article
                nihpa165706
                10.1038/nature08728
                2818761
                20130643
                4794b207-549f-4cdb-96f3-3e008400bee4

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID
                Award ID: R01 AI044008-11 ||AI
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article