25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      EGF Activates Its Receptor by Removing Interactions that Autoinhibit Ectodomain Dimerization

      Molecular Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Shape complementarity at protein/protein interfaces.

          A new statistic Sc, which has a number of advantages over other measures of packing, is used to examine the shape complementarity of protein/protein interfaces selected from the Brookhaven Protein Data Bank. It is shown using Sc that antibody/antigen interfaces as a whole exhibit poorer shape complementarity than is observed in other systems involving protein/protein interactions. This result can be understood in terms of the fundamentally different evolutionary history of particular antibody/antigen associations compared to other systems considered, and in terms of the differing chemical natures of the interfaces.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization.

            The crystal structure of a dimeric 2:2:2 FGF:FGFR:heparin ternary complex at 3 A resolution has been determined. Within each 1:1 FGF:FGFR complex, heparin makes numerous contacts with both FGF and FGFR, thereby augmenting FGF-FGFR binding. Heparin also interacts with FGFR in the adjoining 1:1 FGF:FGFR complex to promote FGFR dimerization. The 6-O-sulfate group of heparin plays a pivotal role in mediating both interactions. The unexpected stoichiometry of heparin binding in the structure led us to propose a revised model for FGFR dimerization. Biochemical data in support of this model are also presented. This model provides a structural basis for FGFR activation by small molecule heparin analogs and may facilitate the design of heparin mimetics capable of modulating FGF signaling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human growth hormone and extracellular domain of its receptor: crystal structure of the complex

              Binding of human growth hormone (hGH) to its receptor is required for regulation of normal human growth and development. Examination of the 2.8 angstrom crystal structure of the complex between the hormone and the extracellular domain of its receptor (hGHbp) showed that the complex consists of one molecule of growth hormone per two molecules of receptor. The hormone is a four-helix bundle with an unusual topology. The binding protein contains two distinct domains, similar in some respects to immunoglobulin domains. The relative orientation of these domains differs from that found between constant and variable domains in immunoglobulin Fab fragments. Both hGHbp domains contribute residues that participate in hGH binding. In the complex both receptors donate essentially the same residues to interact with the hormone, even though the two binding sites on hGH have no structural similarity. Generally, the hormone-receptor interfaces match those identified by previous mutational analyses. In addition to the hormone-receptor interfaces, there is also a substantial contact surface between the carboxyl-terminal domains of the receptors. The relative extents of the contact areas support a sequential mechanism for dimerization that may be crucial for signal transduction.
                Bookmark

                Author and article information

                Journal
                10.1016/S1097-2765(03)00047-9
                http://www.elsevier.com/tdm/userlicense/1.0/

                Comments

                Comment on this article