34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Prefrontal cortex output circuits guide reward seeking through divergent cue encoding

      Nature
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Conference Proceedings: not found

          A study of cross-validation and bootstrap for accuracy estimation and model selection in

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cortical connectivity and sensory coding.

            The sensory cortex contains a wide array of neuronal types, which are connected together into complex but partially stereotyped circuits. Sensory stimuli trigger cascades of electrical activity through these circuits, causing specific features of sensory scenes to be encoded in the firing patterns of cortical populations. Recent research is beginning to reveal how the connectivity of individual neurons relates to the sensory features they encode, how differences in the connectivity patterns of different cortical cell classes enable them to encode information using different strategies, and how feedback connections from higher-order cortex allow sensory information to be integrated with behavioural context.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Amygdala to nucleus accumbens excitatory transmission facilitates reward seeking

              The basolateral amygdala (BLA) plays a crucial role in emotional learning irrespective of valence 1–5 . While the BLA projection to the nucleus accumbens (NAc) is hypothesized to modulate cue-triggered motivated behaviors 4, 6, 7,, our understanding of the interaction between these two brain regions has been limited by the inability to manipulate neural circuit elements of this pathway selectively during behavior. To circumvent this limitation, we used in vivo optogenetic stimulation or inhibition of glutamatergic fibers from the BLA to the NAc, coupled with intracranial pharmacology and ex vivo electrophysiology. We show that optical stimulation of the BLA-to-NAc pathway in mice reinforces behavioral responding to earn additional optical stimulations of these synaptic inputs. Optical stimulation of BLA-to-NAc glutamatergic fibers required intra-NAc dopamine D1-type, but not D2-type, receptor signaling. Brief optical inhibition of BLA-to-NAc fibers reduced cue-evoked intake of sucrose, demonstrating an important role of this specific pathway in controlling naturally occurring reward-related behavior. Moreover, while optical stimulation of medial prefrontal cortex (mPFC) to NAc glutamatergic fibers also elicited reliable excitatory synaptic responses, optical self-stimulation behavior was not observed by activation of this pathway. These data suggest that while the BLA is important for processing both positive and negative affect, the BLA-to-NAc glutamatergic pathway in conjunction with dopamine signaling in the NAc promotes motivated behavioral responding.
                Bookmark

                Author and article information

                Journal
                10.1038/nature21376
                http://www.springer.com/tdm

                Comments

                Comment on this article