38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interferon Gamma Activated Macrophages Kill Mycobacteria by Nitric Oxide Induced Apoptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mycobacterium tuberculosis is an intracellular pathogen of macrophages and escapes the macrophages' bactericidal effectors by interfering with phagosome-lysosome fusion. IFN-γ activation renders the macrophages capable of killing intracellular mycobacteria by overcoming the phagosome maturation block, nutrient deprivation and exposure to microbicidal effectors including nitric oxide (NO). While the importance about NO for the control of mycobacterial infection in murine macrophages is well documented, the underlying mechanism has not been revealed yet. In this study we show that IFN-γ induced apoptosis in mycobacteria-infected macrophages, which was strictly dependent on NO. Subsequently, NO-mediated apoptosis resulted in the killing of intracellular mycobacteria independent of autophagy. In fact, killing of mycobacteria was susceptible to the autophagy inhibitor 3-methyladenine (3-MA). However, 3-MA also suppressed NO production, which is an important off-target effect to be considered in autophagy studies using 3-MA. Inhibition of caspase 3/7 activation, as well as NO production, abolished apoptosis and elimination of mycobacteria by IFN-γ activated macrophages. In line with the finding that drug-induced apoptosis kills intracellular mycobacteria in the absence of NO, we identified NO-mediated apoptosis as a new defense mechanism of activated macrophages against M. tuberculosis.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of nitric oxide synthase as a protective locus against tuberculosis.

          Mutagenesis of the host immune system has helped identify response pathways necessary to combat tuberculosis. Several such pathways may function as activators of a common protective gene: inducible nitric oxide synthase (NOS2). Here we provide direct evidence for this gene controlling primary Mycobacterium tuberculosis infection using mice homozygous for a disrupted NOS2 allele. NOS2(-/-) mice proved highly susceptible, resembling wild-type littermates immunosuppressed by high-dose glucocorticoids, and allowed Mycobacterium tuberculosis to replicate faster in the lungs than reported for other gene-deficient hosts. Susceptibility appeared to be independent of the only known naturally inherited antimicrobial locus, NRAMP1. Progression of chronic tuberculosis in wild-type mice was accelerated by specifically inhibiting NOS2 via administration of N6-(1-iminoethyl)-L-lysine. Together these findings identify NOS2 as a critical host gene for tuberculostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair

            Induction of macrophage necrosis is an important strategy used by virulent Mycobacterium tuberculosis (Mtb) to avoid innate host defense. In contrast, attenuated Mtb causes apoptosis, which limits bacterial replication and promotes T cell cross priming by antigen presenting cells. Here we demonstrated that Mtb infection causes plasma membrane microdisruptions. Resealing of these lesions—a process crucial for preventing necrosis and promoting apoptosis—required the translocation of lysosome and Golgi apparatus-derived vesicles to the plasma membrane. Plasma membrane repair depended on prostaglandin E2 (PGE2), which regulates synaptotagmin 7, the Ca++ sensor involved in the lysosome-mediated repair mechanism. By inducing production of lipoxin A4 (LXA4), which blocks PGE2 biosynthesis, virulent Mtb prevented membrane repair and induced necrosis. Thus, virulent Mtb impairs macrophage plasma membrane repair to evade host defenses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis.

              Autophagy is a recently recognized immune effector mechanism against intracellular pathogens. The role of autophagy in innate immunity has been well established, but the extent of its regulation by the adaptive immune response is less well understood. The T helper 1 (Th1) cell cytokine IFN-gamma induces autophagy in macrophages to eliminate Mycobacterium tuberculosis. Here, we report that Th2 cytokines affect autophagy in macrophages and their ability to control intracellular M. tuberculosis. IL-4 and IL-13 abrogated autophagy and autophagy-mediated killing of intracellular mycobacteria in murine and human macrophages. Inhibition of starvation-induced autophagy by IL-4 and IL-13 was dependent on Akt signaling, whereas the inhibition of IFN-gamma-induced autophagy was Akt independent and signal transducer and activator of transcription 6 (STAT6) dependent. These findings establish a mechanism through which Th1-Th2 polarization differentially affects the immune control of intracellular pathogens.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                2 May 2011
                : 6
                : 5
                : e19105
                Affiliations
                [1 ]Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
                [2 ]Department of Molecular Infection Biology, Research Center Borstel, Borstel, Germany
                Institut Pasteur, France
                Author notes

                Conceived and designed the experiments: SH UES BES. Performed the experiments: SH BES. Analyzed the data: SH BES. Contributed reagents/materials/analysis tools: SH UES BES. Wrote the paper: SH UES BES.

                Article
                PONE-D-11-00707
                10.1371/journal.pone.0019105
                3085516
                21559306
                00494320-fb20-4b0a-8fbc-cfebb7289730
                Herbst et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 December 2010
                : 17 March 2011
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Immunology
                Immune Cells
                Monocytes
                Microbiology
                Immunity
                Immune Defense
                Innate Immunity
                Host-Pathogen Interaction
                Medicine
                Infectious Diseases
                Bacterial Diseases
                Tuberculosis

                Uncategorized
                Uncategorized

                Comments

                Comment on this article