99
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Green Fluorescent Protein with Photoswitchable Emission from the Deep Sea

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A colorful variety of fluorescent proteins (FPs) from marine invertebrates are utilized as genetically encoded markers for live cell imaging. The increased demand for advanced imaging techniques drives a continuous search for FPs with new and improved properties. Many useful FPs have been isolated from species adapted to sun-flooded habitats such as tropical coral reefs. It has yet remained unknown if species expressing green fluorescent protein (GFP)-like proteins also exist in the darkness of the deep sea. Using a submarine-based and -operated fluorescence detection system in the Gulf of Mexico, we discovered ceriantharians emitting bright green fluorescence in depths between 500 and 600 m and identified a GFP, named cerFP505, with bright fluorescence emission peaking at 505 nm. Spectroscopic studies showed that ∼15% of the protein bulk feature reversible ON/OFF photoswitching that can be induced by alternating irradiation with blue und near-UV light. Despite being derived from an animal adapted to essentially complete darkness and low temperatures, cerFP505 maturation in living mammalian cells at 37°C, its brightness and photostability are comparable to those of EGFP and cmFP512 from shallow water species. Therefore, our findings disclose the deep sea as a potential source of GFP-like molecular marker proteins.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          The green fluorescent protein.

          R Tsien (1998)
          In just three years, the green fluorescent protein (GFP) from the jellyfish Aequorea victoria has vaulted from obscurity to become one of the most widely studied and exploited proteins in biochemistry and cell biology. Its amazing ability to generate a highly visible, efficiently emitting internal fluorophore is both intrinsically fascinating and tremendously valuable. High-resolution crystal structures of GFP offer unprecedented opportunities to understand and manipulate the relation between protein structure and spectroscopic function. GFP has become well established as a marker of gene expression and protein targeting in intact cells and organisms. Mutagenesis and engineering of GFP into chimeric proteins are opening new vistas in physiological indicators, biosensors, and photochemical memories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Far-field optical nanoscopy.

            In 1873, Ernst Abbe discovered what was to become a well-known paradigm: the inability of a lens-based optical microscope to discern details that are closer together than half of the wavelength of light. However, for its most popular imaging mode, fluorescence microscopy, the diffraction barrier is crumbling. Here, I discuss the physical concepts that have pushed fluorescence microscopy to the nanoscale, once the prerogative of electron and scanning probe microscopes. Initial applications indicate that emergent far-field optical nanoscopy will have a strong impact in the life sciences and in other areas benefiting from nanoscale visualization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin.

              Important Ca2+ signals in the cytosol and organelles are often extremely localized and hard to measure. To overcome this problem we have constructed new fluorescent indicators for Ca2+ that are genetically encoded without cofactors and are targetable to specific intracellular locations. We have dubbed these fluorescent indicators 'cameleons'. They consist of tandem fusions of a blue- or cyan-emitting mutant of the green fluorescent protein (GFP), calmodulin, the calmodulin-binding peptide M13, and an enhanced green- or yellow-emitting GFP. Binding of Ca2+ makes calmodulin wrap around the M13 domain, increasing the fluorescence resonance energy transfer (FRET) between the flanking GFPs. Calmodulin mutations can tune the Ca2+ affinities to measure free Ca2+ concentrations in the range 10(-8) to 10(-2) M. We have visualized free Ca2+ dynamics in the cytosol, nucleus and endoplasmic reticulum of single HeLa cells transfected with complementary DNAs encoding chimaeras bearing appropriate localization signals. Ca2+ concentration in the endoplasmic reticulum of individual cells ranged from 60 to 400 microM at rest, and 1 to 50 microM after Ca2+ mobilization. FRET is also an indicator of the reversible intermolecular association of cyan-GFP-labelled calmodulin with yellow-GFP-labelled M13. Thus FRET between GFP mutants can monitor localized Ca2+ signals and protein heterodimerization in individual live cells.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                19 November 2008
                : 3
                : 11
                : e3766
                Affiliations
                [1 ]Institute of General Zoology and Endocrinology, University of Ulm, Ulm, Germany
                [2 ]Department of Internal Medicine I, University of Ulm, Ulm, Germany
                [3 ]NightSea, Andover, Massachusetts, United States of America
                [4 ]Integrative Biology, University of Texas in Austin, Austin, Texas, United States of America
                [5 ]Institute of Biophysics, University of Ulm, Ulm, Germany
                [6 ]Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
                [7 ]National Oceanography Centre, University of Southampton, Southampton, United Kingdom
                The Beatson Institute, United Kingdom
                Author notes

                Conceived and designed the experiments: FO CHM MVM JW. Performed the experiments: AV CD FO AD CHM MVM SI JW. Analyzed the data: AV CD FO SI GUN JW. Contributed reagents/materials/analysis tools: CHM MVM JW. Wrote the paper: CD GUN JW.

                Article
                08-PONE-RA-05169R1
                10.1371/journal.pone.0003766
                2582951
                19018285
                0075a550-187c-49a9-809d-c2b9c5452b9d
                Vogt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 20 June 2008
                : 18 August 2008
                Page count
                Pages: 8
                Categories
                Research Article
                Biophysics
                Cell Biology
                Molecular Biology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article