53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Single Nucleotide Polymorphism within the Acetyl-Coenzyme A Carboxylase Beta Gene Is Associated with Proteinuria in Patients with Type 2 Diabetes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has been suggested that genetic susceptibility plays an important role in the pathogenesis of diabetic nephropathy. A large-scale genotyping analysis of gene-based single nucleotide polymorphisms (SNPs) in Japanese patients with type 2 diabetes identified the gene encoding acetyl-coenzyme A carboxylase beta ( ACACB) as a candidate for a susceptibility to diabetic nephropathy; the landmark SNP was found in the intron 18 of ACACB (rs2268388: intron 18 +4139 C > T, p = 1.4×10 −6, odds ratio = 1.61, 95% confidence interval [CI]: 1.33–1.96). The association of this SNP with diabetic nephropathy was examined in 9 independent studies (4 from Japan including the original study, one Singaporean, one Korean, and two European) with type 2 diabetes. One case-control study involving European patients with type 1 diabetes was included. The frequency of the T allele for SNP rs2268388 was consistently higher among patients with type 2 diabetes and proteinuria. A meta-analysis revealed that rs2268388 was significantly associated with proteinuria in Japanese patients with type 2 diabetes (p = 5.35×10 −8, odds ratio = 1.61, 95% Cl: 1.35–1.91). Rs2268388 was also associated with type 2 diabetes–associated end-stage renal disease (ESRD) in European Americans (p = 6×10 −4, odds ratio = 1.61, 95% Cl: 1.22–2.13). Significant association was not detected between this SNP and nephropathy in those with type 1 diabetes. A subsequent in vitro functional analysis revealed that a 29-bp DNA fragment, including rs2268388, had significant enhancer activity in cultured human renal proximal tubular epithelial cells. Fragments corresponding to the disease susceptibility allele (T) had higher enhancer activity than those of the major allele. These results suggest that ACACB is a strong candidate for conferring susceptibility for proteinuria in patients with type 2 diabetes.

          Author Summary

          Although cumulative epidemiological findings have suggested that genetic susceptibility plays an important role in the pathogenesis of diabetic nephropathy, no gene conferring susceptibility to diabetic nephropathy has been definitively identified. In a large-scale association study of 1,312 Japanese subjects with type 2 diabetes using SNPs from a Japanese SNP database, we show that the T-allele of ACACB rs2268388 is associated with diabetic nephropathy. We also show that the association is consistently observed in patients with type 2 diabetes and proteinuria across different ethnic groups, including populations of European descent. Because a DNA fragment corresponding to the disease susceptibility allele is shown to have higher enhancer activity, we hypothesize that the increase in the expression and/or activity of the encoded acetyl-coenzyme A carboxylase beta contributes to the development and progression of diabetic nephropathy. Our present analysis provides novel insight into the pathogenesis of diabetic nephropathy. This finding is important because diabetic nephropathy is a leading cause of end-stage renal disease and affects life expectancy in subjects with type 2 diabetes.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes.

          Cardiovascular morbidity is a major burden in patients with type 2 diabetes. In the Steno-2 Study, we compared the effect of a targeted, intensified, multifactorial intervention with that of conventional treatment on modifiable risk factors for cardiovascular disease in patients with type 2 diabetes and microalbuminuria. The primary end point of this open, parallel trial was a composite of death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, revascularization, and amputation. Eighty patients were randomly assigned to receive conventional treatment in accordance with national guidelines and 80 to receive intensive treatment, with a stepwise implementation of behavior modification and pharmacologic therapy that targeted hyperglycemia, hypertension, dyslipidemia, and microalbuminuria, along with secondary prevention of cardiovascular disease with aspirin. The mean age of the patients was 55.1 years, and the mean follow-up was 7.8 years. The decline in glycosylated hemoglobin values, systolic and diastolic blood pressure, serum cholesterol and triglyceride levels measured after an overnight fast, and urinary albumin excretion rate were all significantly greater in the intensive-therapy group than in the conventional-therapy group. Patients receiving intensive therapy also had a significantly lower risk of cardiovascular disease (hazard ratio, 0.47; 95 percent confidence interval, 0.24 to 0.73), nephropathy (hazard ratio, 0.39; 95 percent confidence interval, 0.17 to 0.87), retinopathy (hazard ratio, 0.42; 95 percent confidence interval, 0.21 to 0.86), and autonomic neuropathy (hazard ratio, 0.37; 95 percent confidence interval, 0.18 to 0.79). A target-driven, long-term, intensified intervention aimed at multiple risk factors in patients with type 2 diabetes and microalbuminuria reduces the risk of cardiovascular and microvascular events by about 50 percent. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A genome-wide association study identifies novel risk loci for type 2 diabetes.

            Type 2 diabetes mellitus results from the interaction of environmental factors with a combination of genetic variants, most of which were hitherto unknown. A systematic search for these variants was recently made possible by the development of high-density arrays that permit the genotyping of hundreds of thousands of polymorphisms. We tested 392,935 single-nucleotide polymorphisms in a French case-control cohort. Markers with the most significant difference in genotype frequencies between cases of type 2 diabetes and controls were fast-tracked for testing in a second cohort. This identified four loci containing variants that confer type 2 diabetes risk, in addition to confirming the known association with the TCF7L2 gene. These loci include a non-synonymous polymorphism in the zinc transporter SLC30A8, which is expressed exclusively in insulin-producing beta-cells, and two linkage disequilibrium blocks that contain genes potentially involved in beta-cell development or function (IDE-KIF11-HHEX and EXT2-ALX4). These associations explain a substantial portion of disease risk and constitute proof of principle for the genome-wide approach to the elucidation of complex genetic traits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2.

              Malonyl-coenzyme A (malonyl-CoA), generated by acetyl-CoA carboxylases ACC1 and ACC2, is a key metabolite in the regulation of energy homeostasis. Here, we show that Acc2-/- mutant mice have a normal life span, a higher fatty acid oxidation rate, and lower amounts of fat. In comparison to the wild type, Acc2-deficient mice had 10- and 30-fold lower levels of malonyl-CoA in heart and muscle, respectively. The fatty acid oxidation rate in the soleus muscle of the Acc2-/- mice was 30% higher than that of wild-type mice and was not affected by addition of insulin; however, addition of insulin to the wild-type muscle reduced fatty acid oxidation by 45%. The mutant mice accumulated 50% less fat in their adipose tissue than did wild-type mice. These results raise the possibility that pharmacological manipulation of ACC2 may lead to loss of body fat in the context of normal caloric intake.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                February 2010
                February 2010
                12 February 2010
                : 6
                : 2
                : e1000842
                Affiliations
                [1 ]Laboratory for Endocrinology and Metabolism, RIKEN Center for Genomic Medicine, Yokohama, Kanagawa, Japan
                [2 ]Discovery Research Laboratories, Shionogi & Co., Toyonaka, Osaka, Japan
                [3 ]Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
                [4 ]The Diabetes Center, Tokyo Women's Medical University, Tokyo, Japan
                [5 ]Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
                [6 ]Division of Nephrology and Metabolism, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
                [7 ]Steno Diabetes Center and Hagedorn Research Institute, Gentofte, Denmark
                [8 ]Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
                [9 ]Department of Epidemiology and Public Health, National University of Singapore, Singapore
                [10 ]Developmental Research Laboratories, Shionogi & Co., Toyonaka, Osaka, Japan
                [11 ]Laboratory for Medical Informatics, RIKEN Center for Genomic Medicine, Yokohama, Kanagawa, Japan
                [12 ]Kawai Clinic, Tsukuba, Ibaraki, Japan
                [13 ]Division of Nephrology and Hypertension, Department of Internal Medicine, Osaka City General Hospital, Osaka, Japan
                [14 ]Department of Life Science, Sogang University, Seoul, Korea
                [15 ]Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
                [16 ]Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea
                [17 ]Division of Endocrinology and Metabolism, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
                [18 ]Department of Medicine, Metabolism, and Endocrinology, School of Medicine, Juntendo University, Tokyo, Japan
                [19 ]Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark
                [20 ]Department of Medical Endocrinology, Rigshospitalet, Copenhagen, Denmark
                [21 ]Institute of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
                [22 ]Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
                University of Oxford, United Kingdom
                Author notes

                Conceived and designed the experiments: SM YN. Performed the experiments: SM MaK MI TY HU HDS KSP. Analyzed the data: SM BIF DPKN TT HDS KSP. Contributed reagents/materials/analysis tools: SiA TB BIF MAB JNC MT TU LT TH PG AJ DPKN KK MI DS HDS KSP AK YI KK RK HHP DWB OP. Wrote the paper: SM BIF TH OP. Performed real-time PCR: MK TY. Performed transfection experiments: MK HU. Performed European American study: BIF MAB JNC DWB. Performed Danish Type 1 diabetes study: LT AJ HHP. Performed Danish Steno-2 study: TH PG OP. Performed Singapore study: DPKN. Performed in situ hybridization: MI. Performed Korean study: HDS KSP.

                Article
                09-PLGE-RA-1633R3
                10.1371/journal.pgen.1000842
                2820513
                20168990
                00f5fbad-0100-4732-b00a-dda1f712d619
                Maeda et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 14 September 2009
                : 11 January 2010
                Page count
                Pages: 9
                Categories
                Research Article
                Diabetes and Endocrinology/Type 2 Diabetes
                Genetics and Genomics/Complex Traits
                Nephrology

                Genetics
                Genetics

                Comments

                Comment on this article