11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Candida albicans Antifungal Resistance and Tolerance in Bloodstream Infections: The Triad Yeast-Host-Antifungal

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Candida albicans represents the most frequent isolated yeast from bloodstream infections. Despite the remarkable progress in diagnostic and therapeutic approaches, these infections continue to be a critical challenge in intensive care units worldwide. The economic cost of bloodstream fungal infections and its associated mortality, especially in debilitated patients, remains unacceptably high. Candida albicans is a highly adaptable microorganism, being able to develop resistance following prolonged exposure to antifungals. Formation of biofilms, which diminish the accessibility of the antifungal, selection of spontaneous mutations that increase expression or decreased susceptibility of the target, altered chromosome abnormalities, overexpression of multidrug efflux pumps and the ability to escape host immune defenses are some of the factors that can contribute to antifungal tolerance and resistance. The knowledge of the antifungal resistance mechanisms can allow the design of alternative therapeutically options in order to modulate or revert the resistance. We have focused this review on the main factors that are involved in antifungal resistance and tolerance in patients with C. albicans bloodstream infections.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Invasive candidiasis

          Invasive candidiasis is an important health-care-associated fungal infection that can be caused by several Candida spp.; the most common species is Candida albicans, but the prevalence of these organisms varies considerably depending on geographical location. The spectrum of disease of invasive candidiasis ranges from minimally symptomatic candidaemia to fulminant sepsis with an associated mortality exceeding 70%. Candida spp. are common commensal organisms in the skin and gut microbiota, and disruptions in the cutaneous and gastrointestinal barriers (for example, owing to gastrointestinal perforation) promote invasive disease. A deeper understanding of specific Candida spp. virulence factors, host immune response and host susceptibility at the genetic level has led to key insights into the development of early intervention strategies and vaccine candidates. The early diagnosis of invasive candidiasis is challenging but key to the effective management, and the development of rapid molecular diagnostics could improve the ability to intervene rapidly and potentially reduce mortality. First-line drugs, including echinocandins and azoles, are effective, but the emergence of antifungal resistance, especially among Candida glabrata, is a matter of concern and underscores the need to administer antifungal medications in a judicious manner, avoiding overuse when possible. A newly described pathogen, Candida auris, is an emerging multidrug-resistant organism that poses a global threat.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study.

            Inadequate antimicrobial treatment is an independent determinant of hospital mortality, and fungal bloodstream infections are among the types of infection with the highest rates of inappropriate initial treatment. Because of significant potential for reducing high mortality rates, we sought to assess the impact of delayed treatment across multiple study sites. The goals our analyses were to establish the frequency and duration of delayed antifungal treatment and to evaluate the relationship between treatment delay and mortality. We conducted a retrospective cohort study of patients with candidemia from 4 medical centers who were prescribed fluconazole. Time to initiation of fluconazole therapy was calculated by subtracting the date on which fluconazole therapy was initiated from the culture date of the first blood sample positive for yeast. A total of 230 patients (51% male; mean age +/- standard deviation, 56 +/- 17 years) were identified; 192 of these had not been given prior treatment with fluconazole. Patients most commonly had nonsurgical hospital admission (162 patients [70%]) with a central line catheter (193 [84%]), diabetes (68 [30%]), or cancer (54 [24%]). Candida species causing infection included Candida albicans (129 patients [56%]), Candida glabrata (38 [16%]), Candida parapsilosis (25 [11%]), or Candida tropicalis (15 [7%]). The number of days to the initiation of antifungal treatment was 0 (92 patients [40%]), 1 (38 [17%]), 2 (33 [14%]) or > or = 3 (29 [12%]). Mortality rates were lowest for patients who began therapy on day 0 (14 patients [15%]) followed by patients who began on day 1 (9 [24%]), day 2 (12 [37%]), or day > or = 3 (12 [41%]) (P = .0009 for trend). Multivariate logistic regression was used to calculate independent predictors of mortality, which include increased time until fluconazole initiation (odds ratio, 1.42; P < .05) and Acute Physiology and Chronic Health Evaluation II score (1-point increments; odds ratio, 1.13; P < .05). A delay in the initiation of fluconazole therapy in hospitalized patients with candidemia significantly impacted mortality. New methods to avoid delays in appropriate antifungal therapy, such as rapid diagnostic tests or identification of unique risk factors, are needed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antifungal agents: mechanisms of action

              Clinical needs for novel antifungal agents have altered steadily with the rise and fall of AIDS-related mycoses, and the change in spectrum of fatal disseminated fungal infections that has accompanied changes in therapeutic immunosuppressive therapies. The search for new molecular targets for antifungals has generated considerable research using modern genomic approaches, so far without generating new agents for clinical use. Meanwhile, six new antifungal agents have just reached, or are approaching, the clinic. Three are new triazoles, with extremely broad antifungal spectra, and three are echinocandins, which inhibit synthesis of fungal cell wall polysaccharides--a new mode of action. In addition, the sordarins represent a novel class of agents that inhibit fungal protein synthesis. This review describes the targets and mechanisms of action of all classes of antifungal agents in clinical use or with clinical potential.
                Bookmark

                Author and article information

                Journal
                Microorganisms
                Microorganisms
                microorganisms
                Microorganisms
                MDPI
                2076-2607
                22 January 2020
                February 2020
                : 8
                : 2
                : 154
                Affiliations
                [1 ]Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Al. Hernâni Monteiro, 4200-319 Porto, Portugal; agr@ 123456med.up.pt
                [2 ]Center for Research in Health Technologies and Information Systems (CINTESIS), R. Dr. Plácido da Costa, 4200-450 Porto, Portugal
                [3 ]Burn Unit, São João Hospital Center, Al. Hernâni Monteiro, 4200-319 Porto, Portugal
                Author notes
                [* ]Correspondence: sqco@ 123456med.up.pt ; Tel.: +351-220-426-870
                Article
                microorganisms-08-00154
                10.3390/microorganisms8020154
                7074842
                31979032
                025c17ed-1524-4282-8a54-8bc8b708575c
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 December 2019
                : 16 January 2020
                Categories
                Review

                c. albicans,antifungal resistance,bloodstream infections,candida infections,virulence

                Comments

                Comment on this article