7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Roles of herbivorous insects salivary proteins

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The intricate relationship between herbivorous insects and plants has evolved over millions of years, central to this dynamic interaction are salivary proteins (SPs), which mediate key processes ranging from nutrient acquisition to plant defense manipulation. SPs, sourced from salivary glands, intestinal regurgitation or acquired through horizontal gene transfer, exhibit remarkable functional versatility, influencing insect development, behavior, and adhesion mechanisms. Moreover, SPs play pivotal roles in modulating plant defenses, to induce or inhibit plant defenses as elicitors or effectors. In this review, we delve into the multifaceted roles of SPs in herbivorous insects, highlighting their diverse impacts on insect physiology and plant responses. Through a comprehensive exploration of SP functions, this review aims to deepen our understanding of plant-insect interactions and foster advancements in both fundamental research and practical applications in plant-insect interactions.

          Graphical abstract

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          The plant immune system.

          Many plant-associated microbes are pathogens that impair plant growth and reproduction. Plants respond to infection using a two-branched innate immune system. The first branch recognizes and responds to molecules common to many classes of microbes, including non-pathogens. The second responds to pathogen virulence factors, either directly or through their effects on host targets. These plant immune systems, and the pathogen molecules to which they respond, provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms. A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Myriad Plant Responses to Herbivores.

            Walling (2000)
            Plant responses to herbivores are complex. Genes activated on herbivore attack are strongly correlated with the mode of herbivore feeding and the degree of tissue damage at the feeding site. Phloem-feeding whiteflies and aphids that produce little injury to plant foliage are perceived as pathogens and activate the salicylic acid (SA)-dependent and jasmonic acid (JA)/ethylene-dependent signaling pathways. Differential expression of plant genes in response to closely related insect species suggest that some elicitors generated by phloem-feeding insects are species-specific and are dependent on the herbivore's developmental stage. Other elicitors for defense-gene activation are likely to be more ubiquitous. Analogies to the pathogen-incompatible reactions are found. Chewing insects such as caterpillars and beetles and cell-content feeders such as mites and thrips cause more extensive tissue damage and activate wound-signaling pathways. Herbivore feeding is not equivalent to mechanical wounding. Wound responses are a part of the induced responses that accompany herbivore feeding. Herbivores induce direct defenses that interfere with herbivore feeding, growth and development, fecundity, and fertility. In addition, herbivores induce an array of volatiles that creates an indirect mechanism of defense. Volatile blends provide specific cues to attract herbivore parasites and predators to infested plants. The nature of the elicitors for volatile production is discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein posttranslational modifications: the chemistry of proteome diversifications.

              The diversity of distinct covalent forms of proteins (the proteome) greatly exceeds the number of proteins predicted by DNA coding capacities owing to directed posttranslational modifications. Enzymes dedicated to such protein modifications include 500 human protein kinases, 150 protein phosphatases, and 500 proteases. The major types of protein covalent modifications, such as phosphorylation, acetylation, glycosylation, methylation, and ubiquitylation, can be classified according to the type of amino acid side chain modified, the category of the modifying enzyme, and the extent of reversibility. Chemical events such as protein splicing, green fluorescent protein maturation, and proteasome autoactivations also represent posttranslational modifications. An understanding of the scope and pattern of the many posttranslational modifications in eukaryotic cells provides insight into the function and dynamics of proteome compositions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                03 April 2024
                15 April 2024
                03 April 2024
                : 10
                : 7
                : e29201
                Affiliations
                [a ]Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
                [b ]Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
                Author notes
                [* ]Corresponding author. Institute of Entomology, Guizhou University, Guiyang, 550025, PR China. jjguo@ 123456gzu.edu.cn
                Article
                S2405-8440(24)05232-0 e29201
                10.1016/j.heliyon.2024.e29201
                11004886
                38601688
                0306ade5-b21f-4d42-bc18-eed48fe65af5
                © 2024 Published by Elsevier Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 21 December 2023
                : 1 April 2024
                : 2 April 2024
                Categories
                Review Article

                herbivorous insects,salivary proteins,biological function,effector

                Comments

                Comment on this article