41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Magnolol Ameliorates Ligature-Induced Periodontitis in Rats and Osteoclastogenesis: In Vivo and In Vitro Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Periodontal disease characterized by alveolar bone resorption and bacterial pathogen-evoked inflammatory response has been believed to have an important impact on human oral health. The aim of this study was to evaluate whether magnolol, a main constituent of Magnolia officinalis, could inhibit the pathological features in ligature-induced periodontitis in rats and osteoclastogenesis. The sterile, 3–0 (diameter; 0.2 mm) black braided silk thread, was placed around the cervix of the upper second molars bilaterally and knotted medially to induce periodontitis. The morphological changes around the ligated molars and alveolar bone were examined by micro-CT. The distances between the amelocemental junction and the alveolar crest of the upper second molars bilaterally were measured to evaluate the alveolar bone loss. Administration of magnolol (100 mg/kg, p.o.) significantly inhibited alveolar bone resorption, the number of osteoclasts on bony surface, and protein expression of receptor activator of nuclear factor- κ B ligand (RANKL), a key mediator promoting osteoclast differentiation, in ligated rats. Moreover, the ligature-induced neutrophil infiltration, expression of inducible nitric oxide synthase, cyclooxygenase-2, matrix metalloproteinase (MMP)-1 and MMP-9, superoxide formation, and nuclear factor- κ B activation in inflamed gingival tissues were all attenuated by magnolol. In the in vitro study, magnolol also inhibited the growth of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans that are key pathogens initiating periodontal disease. Furthermore, magnolol dose dependently reduced RANKL-induced osteoclast differentiation from RAW264.7 macrophages, tartrate-resistant acid phosphatase (TRAP) activity of differentiated cells accompanied by a significant attenuation of resorption pit area caused by osteoclasts. Collectively, we demonstrated for the first time that magnolol significantly ameliorates the alveolar bone loss in ligature-induced experimental periodontitis by suppressing periodontopathic microorganism accumulation, NF- κ B-mediated inflammatory mediator synthesis, RANKL formation, and osteoclastogenesis. These activities support that magnolol is a potential agent to treat periodontal disease.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation and uncoupling as mechanisms of periodontal bone loss.

          Periodontal disease is characterized by both inflammation and bone loss. Advances in research in both these areas have led to a new appreciation of not only each field but also the intimate relationship between inflammation and bone loss. This relationship has resulted in a new field of science called osteoimmunology and provides a context for better understanding the pathogenesis of periodontal disease. In this review, we discuss several aspects of the immuno-inflammatory host response that ultimately results in loss of alveolar bone. A proposal is made that periodontal inflammation not only stimulates osteoclastogenesis but also interferes with the uncoupling of bone formation and bone resorption, consistent with a pathologic process. Furthermore, arguments based on experimental animal models suggest a critical role of the spatial and temporal aspects of inflammation in the periodontium. A review of these findings leads to a new paradigm to help explain more fully the impact of inflammation on alveolar bone in periodontal disease so that it includes the effects of inflammation on uncoupling of bone formation from resorption.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Surface RANKL of Toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption.

            Inflammatory bone loss in septic and inflammatory conditions is due to increased activity of osteoclasts that requires receptor activator of NF-kappa B-ligand (RANKL). Neutrophils are the predominant infiltrating cells in these conditions. Although disease severity is linked to neutrophils, their role in evolution of bony lesions is not clear. We show that lipopolysaccharide (LPS), a toll-like receptor 4 ligand, up-regulated the expression of membrane RANKL in human blood neutrophils and murine air pouch-derived neutrophils. LPS-activated human and murine neutrophils, cocultured with human monocyte-derived osteoclasts and RAW 264.7 cells, respectively, stimulated bone resorption. Transfection of PLB-985 neutrophil-like cells with RANKL antisense RNA reduced osteoclastogenesis. Synovial fluid neutrophils of patients with exacerbation of rheumatoid arthritis strongly expressed RANKL and activated osteoclastogenesis in coculture systems. Osteoprotegerin, the RANKL decoy receptor, suppressed osteoclast activation by neutrophils from these different sources. Moreover, direct cell-cell contact between neutrophils and osteoclasts was visualized by confocal laser microscopy. Activation of neutrophil membrane-bound RANKL was linked to tyrosine phosphorylation of Src-homology domain-containing cytosolic phosphatase 1 with concomitant down-regulation of cytokine production. The demonstration of these novel functions of neutrophils highlights their potential role in osteoimmunology and in therapeutics of inflammatory bone disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NF-kappaB modulators in osteolytic bone diseases.

              Osteoclasts are responsible for bone resorption and play a pivotal role in the pathogenesis of osteolytic disorders. NF-kappaB is a set of nuclear factors that bind to consensus DNA sequences called kappaB sites, and is essential for osteoclast formation and survival. NF-kappaB signalling pathways are strictly regulated to maintain bone homeostasis by cytokines such as RANKL, TNF-alpha and IL-1, which differentially regulate classical and/or alternative NF-kappaB pathways in osteoclastic cells. These pathways are also modulated by NF-kappaB mediators, including TRAF6, aPKC, p62/SQSTM1 and deubiquitinating enzyme CYLD that are involved in the ubiquitin-proteasome system during RANK-mediated osteoclastogenesis. Abnormal activation of NF-kappaB signalling in osteoclasts has been associated with excessive osteoclastic activity, and frequently observed in osteolytic conditions, including periprosthetic osteolysis, arthritis, Paget's disease of bone, and periodontitis. NF-kappaB modulators such as parthenolide and NEMO-binding domain peptide demonstrate therapeutic effects on inflammation-induced bone destruction in mouse models. Unravelling the structure and function of NF-kappaB pathways in osteoclasts and other cell types will be important in developing new strategies for treatments of bone diseases.
                Bookmark

                Author and article information

                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi Publishing Corporation
                1741-427X
                1741-4288
                2013
                21 March 2013
                21 March 2013
                : 2013
                : 634095
                Affiliations
                1Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
                2Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
                3Department of Biomedical Engineering, National Defense Medical Center, No. 161, Min-Chuan East Road, Section 6, Taipei, Taiwan
                Author notes

                Academic Editor: Cassandra L. Quave

                Author information
                https://orcid.org/0000-0002-7589-2774
                Article
                10.1155/2013/634095
                3618931
                23573141
                03fd46d2-d0b6-41b4-bf18-a3ea55ef0253
                Copyright © 2013 Sheng-Hua Lu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 November 2012
                : 1 February 2013
                : 1 February 2013
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article