8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A novel family of plant splicing factors with a Zn knuckle motif: examination of RNA binding and splicing activities.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An important group of splicing factors involved in constitutive and alternative splicing contain an arginine/serine (RS)-rich domain. We have previously demonstrated the existence of such factors in plants and report now on a new family of splicing factors (termed the RSZ family) from Arabidopsis thaliana which additionally harbor a Zn knuckle motif similar to the human splicing factor 9G8. Although only around 20 kDa in size, members of this family possess a multi-domain structure. In addition to the N-terminal RNA recognition motif (RRM), a Zn finger motif of the CCHC-type is inserted in an RGG-rich region; all three motifs are known to contribute to RNA binding. The C-terminal domain has a characteristic repeated structure which is very arginine-rich and centered around an SP dipeptide. One member of this family, atRSZp22, has been shown to be a phosphoprotein with properties similar to SR proteins. Furthermore, atRSZp22 was able to complement efficiently splicing deficient mammalian S100 as well as h9G8-depleted extracts. RNA binding assays to selected RNA sequences indicate an RNA binding specificity similar to the human splicing factors 9G8 and SRp20. Taken together, these result show that atRSZp22 is a true plant splicing factor which combines structural and functional features of both h9G8 and hSRp20.

          Related collections

          Author and article information

          Journal
          Plant Mol Biol
          Plant molecular biology
          Springer Science and Business Media LLC
          0167-4412
          0167-4412
          Mar 1999
          : 39
          : 4
          Affiliations
          [1 ] Institut für Biochemie, Universität Wien, Vienna, Austria.
          Article
          10.1023/a:1006129615846
          10350090
          041361ff-6017-4994-9c96-f33c39ae1359
          History

          Comments

          Comment on this article