2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Therapeutic applications of contact lens-based drug delivery systems in ophthalmic diseases

      research-article
      a , b , b , c , a , b , c , a , b , c , a , b , c
      Drug Delivery
      Taylor & Francis
      Drug delivery, contact lens, ophthalmic diseases, polymer material

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Traditional ophthalmic drugs, such as eye drops, gels and ointments, are accompanied by many problems, including low bioavailability and potential drug side effects. Innovative ophthalmic drug delivery systems have been proposed to overcome the limitations associated with traditional formulations. Recently, contact lens-based drug delivery systems have gained popularity owing to their advantages of sustained drug delivery, prolonged drug retention, improved bioavailability, and few drug side effects. Various methods have been successfully applied to drug-loaded contact lenses and prolonged the drug release time, such as chemical crosslinking, material embedding, molecular imprinting, colloidal nanoparticles, vitamin E modification, drug polymer film/coating, ion ligand polymerization systems, and supercritical fluid technology. Contact lens-based drug delivery systems play an important role in the treatment of multifarious ophthalmic diseases. This review discusses the latest developments in drug-loaded contact lenses for the treatment of ophthalmic diseases, including preparation methods, application in ophthalmic diseases and future prospects.

          Related collections

          Most cited references164

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Advances and Challenges of Liposome Assisted Drug Delivery

          The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Contact lens sensors in ocular diagnostics.

            Contact lenses as a minimally invasive platform for diagnostics and drug delivery have emerged in recent years. Contact lens sensors have been developed for analyzing the glucose composition of tears as a surrogate for blood glucose monitoring and for the diagnosis of glaucoma by measuring intraocular pressure. However, the eye offers a wider diagnostic potential as a sensing site and therefore contact lens sensors have the potential to improve the diagnosis and treatment of many diseases and conditions. With advances in polymer synthesis, electronics and micro/nanofabrication, contact lens sensors can be produced to quantify the concentrations of many biomolecules in ocular fluids. Non- or minimally invasive contact lens sensors can be used directly in a clinical or point-of-care setting to monitor a disease state continuously. This article reviews the state-of-the-art in contact lens sensor fabrication, their detection, wireless powering, and readout mechanisms, and integration with mobile devices and smartphones. High-volume manufacturing considerations of contact lenses are also covered and a case study of an intraocular pressure contact lens sensor is provided as an example of a successful product. This Review further analyzes the contact lens market and the FDA regulatory requirements for commercialization of contact lens sensors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ocular drug delivery systems: An overview.

              The major challenge faced by today's pharmacologist and formulation scientist is ocular drug delivery. Topical eye drop is the most convenient and patient compliant route of drug administration, especially for the treatment of anterior segment diseases. Delivery of drugs to the targeted ocular tissues is restricted by various precorneal, dynamic and static ocular barriers. Also, therapeutic drug levels are not maintained for longer duration in target tissues. In the past two decades, ocular drug delivery research acceleratedly advanced towards developing a novel, safe and patient compliant formulation and drug delivery devices/techniques, which may surpass these barriers and maintain drug levels in tissues. Anterior segment drug delivery advances are witnessed by modulation of conventional topical solutions with permeation and viscosity enhancers. Also, it includes development of conventional topical formulations such as suspensions, emulsions and ointments. Various nanoformulations have also been introduced for anterior segment ocular drug delivery. On the other hand, for posterior ocular delivery, research has been immensely focused towards development of drug releasing devices and nanoformulations for treating chronic vitreoretinal diseases. These novel devices and/or formulations may help to surpass ocular barriers and associated side effects with conventional topical drops. Also, these novel devices and/or formulations are easy to formulate, no/negligibly irritating, possess high precorneal residence time, sustain the drug release, and enhance ocular bioavailability of therapeutics. An update of current research advancement in ocular drug delivery necessitates and helps drug delivery scientists to modulate their think process and develop novel and safe drug delivery strategies. Current review intends to summarize the existing conventional formulations for ocular delivery and their advancements followed by current nanotechnology based formulation developments. Also, recent developments with other ocular drug delivery strategies employing in situ gels, implants, contact lens and microneedles have been discussed.
                Bookmark

                Author and article information

                Journal
                Drug Deliv
                Drug Deliv
                Drug Delivery
                Taylor & Francis
                1071-7544
                1521-0464
                2 June 2023
                2023
                2 June 2023
                : 30
                : 1
                : 2219419
                Affiliations
                [a ]Shandong University of Traditional Chinese Medicine , Jinan, China
                [b ]Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine , Jinan, China
                [c ]Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases , Jinan, China
                Author notes
                Hongsheng Bi hongshengbi1@ 123456163.com  Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
                Author information
                https://orcid.org/0000-0002-7879-8003
                Article
                2219419
                10.1080/10717544.2023.2219419
                10240982
                37264930
                0588c521-2136-414d-b4ec-a2ae32be17cf
                © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

                History
                Page count
                Figures: 1, Tables: 2, Pages: 14, Words: 12494
                Categories
                Research Article
                Research Article

                Pharmacology & Pharmaceutical medicine
                drug delivery,contact lens,ophthalmic diseases,polymer material

                Comments

                Comment on this article