38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      TH2 cell development and function

      ,
      Nature Reviews Immunology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          T helper 2 (TH2) cells orchestrate protective type 2 immune responses, such as those that target helminths and facilitate tissue repair, but also contribute to chronic inflammatory diseases, such as asthma and allergy. Here, we review recent insights into how diverse molecular signals from cellular sources, including dendritic cells, innate lymphoid cells and the epithelium, are integrated by T cells to guide the transcriptional and epigenetic changes necessary for TH2 cell differentiation. Our improved understanding of these pathways has opened new avenues for therapeutically targeting TH2 cells in asthma and allergy. The advent of comprehensive single-cell transcriptomics along with improvements in single-cell proteomics and the generation of novel in vivo cell fate mapping techniques promise to expand our understanding of T cell diversity and offer new insight into disease-related heterogeneity and plasticity of TH cell responses.

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial.

          Some patients with severe asthma have recurrent asthma exacerbations associated with eosinophilic airway inflammation. Early studies suggest that inhibition of eosinophilic airway inflammation with mepolizumab-a monoclonal antibody against interleukin 5-is associated with a reduced risk of exacerbations. We aimed to establish efficacy, safety, and patient characteristics associated with the response to mepolizumab. We undertook a multicentre, double-blind, placebo-controlled trial at 81 centres in 13 countries between Nov 9, 2009, and Dec 5, 2011. Eligible patients were aged 12-74 years, had a history of recurrent severe asthma exacerbations, and had signs of eosinophilic inflammation. They were randomly assigned (in a 1:1:1:1 ratio) to receive one of three doses of intravenous mepolizumab (75 mg, 250 mg, or 750 mg) or matched placebo (100 mL 0·9% NaCl) with a central telephone-based system and computer-generated randomly permuted block schedule stratified by whether treatment with oral corticosteroids was required. Patients received 13 infusions at 4-week intervals. The primary outcome was the rate of clinically significant asthma exacerbations, which were defined as validated episodes of acute asthma requiring treatment with oral corticosteroids, admission, or a visit to an emergency department. Patients, clinicians, and data analysts were masked to treatment assignment. Analyses were by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01000506. 621 patients were randomised: 159 were assigned to placebo, 154 to 75 mg mepolizumab, 152 to 250 mg mepolizumab, and 156 to 750 mg mepolizumab. 776 exacerbations were deemed to be clinically significant. The rate of clinically significant exacerbations was 2·40 per patient per year in the placebo group, 1·24 in the 75 mg mepolizumab group (48% reduction, 95% CI 31-61%; p<0·0001), 1·46 in the 250 mg mepolizumab group (39% reduction, 19-54%; p=0·0005), and 1·15 in the 750 mg mepolizumab group (52% reduction, 36-64%; p<0·0001). Three patients died during the study, but the deaths were not deemed to be related to treatment. Mepolizumab is an effective and well tolerated treatment that reduces the risk of asthma exacerbations in patients with severe eosinophilic asthma. GlaxoSmithKline. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            T cell metabolism drives immunity

            Buck et al. discuss the role of lymphocyte metabolism on immune cell development and function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit.

              Parasitic helminths and allergens induce a type 2 immune response leading to profound changes in tissue physiology, including hyperplasia of mucus-secreting goblet cells and smooth muscle hypercontractility. This response, known as 'weep and sweep', requires interleukin (IL)-13 production by tissue-resident group 2 innate lymphoid cells (ILC2s) and recruited type 2 helper T cells (TH2 cells). Experiments in mice and humans have demonstrated requirements for the epithelial cytokines IL-33, thymic stromal lymphopoietin (TSLP) and IL-25 in the activation of ILC2s, but the sources and regulation of these signals remain poorly defined. In the small intestine, the epithelium consists of at least five distinct cellular lineages, including the tuft cell, whose function is unclear. Here we show that tuft cells constitutively express IL-25 to sustain ILC2 homeostasis in the resting lamina propria in mice. After helminth infection, tuft-cell-derived IL-25 further activates ILC2s to secrete IL-13, which acts on epithelial crypt progenitors to promote differentiation of tuft and goblet cells, leading to increased frequencies of both. Tuft cells, ILC2s and epithelial progenitors therefore comprise a response circuit that mediates epithelial remodelling associated with type 2 immunity in the small intestine, and perhaps at other mucosal barriers populated by these cells.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Immunology
                Nat Rev Immunol
                Springer Nature
                1474-1733
                1474-1741
                October 30 2017
                October 30 2017
                :
                :
                Article
                10.1038/nri.2017.118
                29082915
                05a5c7f1-d54f-4ff8-a8b1-bd5aa19ac3cd
                © 2017
                History

                Comments

                Comment on this article