70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wolbachia Infections Are Virulent and Inhibit the Human Malaria Parasite Plasmodium Falciparum in Anopheles Gambiae

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endosymbiotic Wolbachia bacteria are potent modulators of pathogen infection and transmission in multiple naturally and artificially infected insect species, including important vectors of human pathogens. Anopheles mosquitoes are naturally uninfected with Wolbachia, and stable artificial infections have not yet succeeded in this genus. Recent techniques have enabled establishment of somatic Wolbachia infections in Anopheles. Here, we characterize somatic infections of two diverse Wolbachia strains (wMelPop and wAlbB) in Anopheles gambiae, the major vector of human malaria. After infection, wMelPop disseminates widely in the mosquito, infecting the fat body, head, sensory organs and other tissues but is notably absent from the midgut and ovaries. Wolbachia initially induces the mosquito immune system, coincident with initial clearing of the infection, but then suppresses expression of immune genes, coincident with Wolbachia replication in the mosquito. Both wMelPop and wAlbB significantly inhibit Plasmodium falciparum oocyst levels in the mosquito midgut. Although not virulent in non-bloodfed mosquitoes, wMelPop exhibits a novel phenotype and is extremely virulent for approximately 12–24 hours post-bloodmeal, after which surviving mosquitoes exhibit similar mortality trajectories to control mosquitoes. The data suggest that if stable transinfections act in a similar manner to somatic infections, Wolbachia could potentially be used as part of a strategy to control the Anopheles mosquitoes that transmit malaria.

          Author Summary

          Infection with Wolbachia bacteria has been shown to reduce pathogen levels in multiple mosquito species. Anopheles mosquitoes (the obligate vectors of human malaria) are naturally uninfected with Wolbachia, and stable artificial infections have not yet succeeded in this genus; however somatic infections can be established that can be used to assess the effect of Wolbachia infection in Anopheles. Here, we show that infection with two different Wolbachia strains (wMelPop and wAlbB) can significantly reduce levels of the human malaria parasite Plasmodium falciparum in Anopheles gambiae. After infection, Wolbachia disseminate throughout the mosquito but are notably absent from the gut and ovaries. The mosquito immune system is first induced in response to Wolbachia infection, but is then suppressed as the infection progresses. The Wolbachia strain wMelPop is highly virulent to Anopheles only after blood feeding. If stable infections can be established in Anopheles, and they act in a similar manner to somatic infections, Wolbachia could potentially be used as part of a strategy to control malaria.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Wolbachia: master manipulators of invertebrate biology.

          Wolbachia are common intracellular bacteria that are found in arthropods and nematodes. These alphaproteobacteria endosymbionts are transmitted vertically through host eggs and alter host biology in diverse ways, including the induction of reproductive manipulations, such as feminization, parthenogenesis, male killing and sperm-egg incompatibility. They can also move horizontally across species boundaries, resulting in a widespread and global distribution in diverse invertebrate hosts. Here, we review the basic biology of Wolbachia, with emphasis on recent advances in our understanding of these fascinating endosymbionts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genome sequence of the malaria mosquito Anopheles gambiae.

            Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR.

              M. Pfaffl (2002)
              Real-time reverse transcription followed by polymerase chain reaction (RT-PCR) is the most suitable method for the detection and quantification of mRNA. It offers high sensitivity, good reproducibility and a wide quantification range. Today, relative expression is increasingly used, where the expression of a target gene is standardised by a non-regulated reference gene. Several mathematical algorithms have been developed to compute an expression ratio, based on real-time PCR efficiency and the crossing point deviation of an unknown sample versus a control. But all published equations and available models for the calculation of relative expression ratio allow only for the determination of a single transcription difference between one control and one sample. Therefore a new software tool was established, named REST (relative expression software tool), which compares two groups, with up to 16 data points in a sample and 16 in a control group, for reference and up to four target genes. The mathematical model used is based on the PCR efficiencies and the mean crossing point deviation between the sample and control group. Subsequently, the expression ratio results of the four investigated transcripts are tested for significance by a randomisation test. Herein, development and application of REST is explained and the usefulness of relative expression in real-time PCR using REST is discussed. The latest software version of REST and examples for the correct use can be downloaded at http://www.wzw.tum.de/gene-quantification/.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2011
                May 2011
                19 May 2011
                : 7
                : 5
                : e1002043
                Affiliations
                [1 ]The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
                [2 ]The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, United States of America
                [3 ]National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
                Stanford University, United States of America
                Author notes

                Conceived and designed the experiments: GLH JLR. Performed the experiments: GLH RK PX. Analyzed the data: GLH RK TF JLR. Contributed reagents/materials/analysis tools: GLH RK TF JLR. Wrote the paper: GLH RK TF JLR.

                Article
                PPATHOGENS-D-10-00274
                10.1371/journal.ppat.1002043
                3098226
                21625582
                060f2f67-ce94-483a-88b2-ec8a7bfc5e1d
                Hughes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 4 November 2010
                : 14 March 2011
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Biochemistry
                Biotechnology
                Ecology
                Genetics
                Immunology
                Microbiology
                Molecular Cell Biology
                Medicine
                Global Health
                Infectious Diseases
                Public Health

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article