0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The emergence of visual semantics through communication games

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The emergence of communication systems between agents which learn to play referential signalling games with realistic images has attracted a lot of attention recently. The majority of work has focused on using fixed, pretrained image feature extraction networks which potentially bias the information the agents learn to communicate. In this work, we consider a signalling game setting in which a `sender' agent must communicate the information about an image to a `receiver' who must select the correct image from many distractors. We investigate the effect of the feature extractor's weights and of the task being solved on the visual semantics learned by the models. We first demonstrate to what extent the use of pretrained feature extraction networks inductively bias the visual semantics conveyed by emergent communication channel and quantify the visual semantics that are induced. We then go on to explore ways in which inductive biases can be introduced to encourage the emergence of semantically meaningful communication without the need for any form of supervised pretraining of the visual feature extractor. We impose various augmentations to the input images and additional tasks in the game with the aim to induce visual representations which capture conceptual properties of images. Through our experiments, we demonstrate that communication systems which capture visual semantics can be learned in a completely self-supervised manner by playing the right types of game. Our work bridges a gap between emergent communication research and self-supervised feature learning.

          Related collections

          Author and article information

          Journal
          25 January 2021
          Article
          2101.10253
          0619a650-0f39-4dbc-a484-fa12eb069cc9

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          arXiv admin note: text overlap with arXiv:1911.05546
          cs.CV cs.CL cs.LG

          Computer vision & Pattern recognition,Theoretical computer science,Artificial intelligence

          Comments

          Comment on this article