17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hyperglycemia-Induced Reactive Oxygen Species Toxicity to Endothelial Cells Is Dependent on Paracrine Mediators

      research-article
      1 , 2 , 3
      Diabetes
      American Diabetes Association

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE—This study determined the effects of high glucose exposure and cytokine treatment on generation of reactive oxygen species (ROS) and activation of inflammatory and apoptotic pathways in human retinal endothelial cells (HRECs).

          RESEARCH DESIGN AND METHODS—Glucose consumption of HRECs, human retinal pigment epithelial cells (HRPEs), and human Müller cells (HMCs) under elevated glucose conditions was measured and compared with cytokine treatment. Production of ROS in HRECs was examined using 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate (CM-H 2DCFDA), spin-trap electron paramagnetic resonance, and MitoTracker Red staining after high glucose and cytokine treatment. The activation of different signaling cascades, including the mitogen-activated protein kinase pathways, tyrosine phosphorylation pathways, and apoptosis by high glucose and cytokines in HRECs, was determined.

          RESULTS—HRECs, in contrast to HRPEs and HMCs, did not increase glucose consumption in response to increasing glucose concentrations. Exposure of HRECs to 25 mmol/l glucose did not stimulate endogenous ROS production, activation of nuclear factor-κB (NF-κB), extracellular signal–related kinase (ERK), p38 and Jun NH 2-terminal kinase (JNK), tyrosine phosphorylation, interleukin (IL)-1β, or tumor necrosis factor-α (TNF-α) production and only slightly affected apoptotic cell death pathways compared with normal glucose (5 mmol/l). In marked contrast, exposure of HRECs to proinflammatory cytokines IL-1β or TNF-α increased glucose consumption, mitochondrial superoxide production, ERK and JNK phosphorylation, tyrosine phosphorylation, NF-κB activation, and caspase activation.

          CONCLUSIONS—Our in vitro results indicate that HRECs respond to cytokines rather than high glucose, suggesting that in vivo diabetes–related endothelial injury in the retina may be due to glucose-induced cytokine release by other retinal cells and not a direct effect of high glucose.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          Diabetes

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diabetic retinopathy: seeing beyond glucose-induced microvascular disease.

            Diabetic retinopathy remains a frightening prospect to patients and frustrates physicians. Destruction of damaged retina by photocoagulation remains the primary treatment nearly 50 years after its introduction. The diabetes pandemic requires new approaches to understand the pathophysiology and improve the detection, prevention, and treatment of retinopathy. This perspective considers how the unique anatomy and physiology of the retina may predispose it to the metabolic stresses of diabetes. The roles of neural retinal alterations and impaired retinal insulin action in the pathogenesis of early retinopathy and the mechanisms of vision loss are emphasized. Potential means to overcome limitations of current animal models and diagnostic testing are also presented with the goal of accelerating therapies to manage retinopathy in the face of ongoing diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy.

              Diabetes leads to vascular leakage, glial dysfunction, and neuronal apoptosis within the retina. The goal of the studies reported here was to determine the role that retinal microglial cells play in diabetic retinopathy and assess whether minocycline can decrease microglial activation and alleviate retinal complications. Immunohistochemical analyses showed that retinal microglia are activated early in diabetes. Furthermore, mRNAs for interleukin-1beta and tumor necrosis factor-alpha, proinflammatory mediators known to be released from microglia, are also increased in the retina early in the course of diabetes. Using an in vitro bioassay, we demonstrated that cytokine-activated microglia release cytotoxins that kill retinal neurons. Furthermore, we showed that neuronal apoptosis is increased in the diabetic retina, as measured by caspase-3 activity. Minocycline represses diabetes-induced inflammatory cytokine production, reduces the release of cytotoxins from activated microglia, and significantly reduces measurable caspase-3 activity within the retina. These results indicate that inhibiting microglial activity may be an important strategy in the treatment of diabetic retinopathy and that drugs such as minocycline hold promise in delaying or preventing the loss of vision associated with this disease.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                July 2008
                : 57
                : 7
                : 1952-1965
                Affiliations
                [1 ]Department of Physiology, Michigan State University, East Lansing, Michigan
                [2 ]Department of Medicine, Case Western Reserve University, Cleveland, Ohio
                [3 ]Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
                Author notes

                Corresponding author: Maria B. Grant, grantma@ 123456ufl.edu

                Article
                5771952
                10.2337/db07-1520
                2453610
                18420487
                061c7396-aaba-4c25-a5f6-031e984b26b7
                Copyright © 2008, American Diabetes Association

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 26 October 2007
                : 9 April 2008
                Categories
                Complications

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article