28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unraveling the tripartite interaction of volatile compounds of Streptomyces rochei with grain mold pathogens infecting sorghum

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sorghum is a major grain crop used in traditional meals and health drinks, and as an efficient fuel. However, its productivity, value, germination, and usability are affected by grain mold, which is a severe problem in sorghum production systems, which reduces the yield of harvested grains for consumer use. The organic approach to the management of the disease is essential and will increase consumer demand. Bioactive molecules like mVOC (volatile organic compound) identification are used to unravel the molecules responsible for antifungal activity. The Streptomyces rochei strain (ASH) has been reported to be a potential antagonist to many pathogens, with high levels of VOCs. The present study aimed to study the inhibitory effect of S. rochei on sorghum grain mold pathogens using a dual culture technique and via the production of microbial volatile organic compounds (mVOCs). mVOCs inhibited the mycelial growth of Fusarium moniliforme by 63.75 and Curvularia lunata by 68.52%. mVOCs suppressed mycelial growth and inhibited the production of spores by altering the structure of mycelia in tripartite plate assay. About 45 mVOCs were profiled when Streptomyces rochei interacted with these two pathogens. In the present study, several compounds were upregulated or downregulated by S. rochei, including 2-methyl-1-butanol, methanoazulene, and cedrene. S. rochei emitted novel terpenoid compounds with peak areas, such as myrcene (1.14%), cymene (6.41%), and ç-terpinene (7.32%) upon interaction with F. moniliforme and C. lunata. The peak area of some of the compounds, including furan 2-methyl (0.70%), benzene (1.84%), 1-butanol, 2-methyl-(8.25%), and myrcene (1.12)%, was increased during tripartite interaction with F. moniliforme and C. lunata, which resulted in furan 2-methyl (6.60%), benzene (4.43%), butanol, 2-methyl (18.67%), and myrcene (1.14%). These metabolites were implicated in the sesquiterpenoid and alkane biosynthetic pathways and the oxalic acid degradation pathway. The present study shows how S. rochei exhibits hyperparasitism, competition, and antibiosis via mVOCs. In addition to their antimicrobial functions, these metabolites could also enhance plant growth.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of action of plant growth promoting bacteria

          The idea of eliminating the use of fertilizers which are sometimes environmentally unsafe is slowly becoming a reality because of the emergence of microorganisms that can serve the same purpose or even do better. Depletion of soil nutrients through leaching into the waterways and causing contamination are some of the negative effects of these chemical fertilizers that prompted the need for suitable alternatives. This brings us to the idea of using microbes that can be developed for use as biological fertilizers (biofertilizers). They are environmentally friendly as they are natural living organisms. They increase crop yield and production and, in addition, in developing countries, they are less expensive compared to chemical fertilizers. These biofertilizers are typically called plant growth-promoting bacteria (PGPB). In addition to PGPB, some fungi have also been demonstrated to promote plant growth. Apart from improving crop yields, some biofertilizers also control various plant pathogens. The objective of worldwide sustainable agriculture is much more likely to be achieved through the widespread use of biofertilizers rather than chemically synthesized fertilizers. However, to realize this objective it is essential that the many mechanisms employed by PGPB first be thoroughly understood thereby allowing workers to fully harness the potentials of these microbes. The present state of our knowledge regarding the fundamental mechanisms employed by PGPB is discussed herein.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects

            The quest for enhancing agricultural yields due to increased pressure on food production has inevitably led to the indiscriminate use of chemical fertilizers and other agrochemicals. Biofertilizers are emerging as a suitable alternative to counteract the adverse environmental impacts exerted by synthetic agrochemicals. Biofertilizers facilitate the overall growth and yield of crops in an eco-friendly manner. They contain living or dormant microbes, which are applied to the soil or used for treating crop seeds. One of the foremost candidates in this respect is rhizobacteria. Plant growth promoting rhizobacteria (PGPR) are an important cluster of beneficial, root-colonizing bacteria thriving in the plant rhizosphere and bulk soil. They exhibit synergistic and antagonistic interactions with the soil microbiota and engage in an array of activities of ecological significance. They promote plant growth by facilitating biotic and abiotic stress tolerance and support the nutrition of host plants. Due to their active growth endorsing activities, PGPRs are considered an eco-friendly alternative to hazardous chemical fertilizers. The use of PGPRs as biofertilizers is a biological approach toward the sustainable intensification of agriculture. However, their application for increasing agricultural yields has several pros and cons. Application of potential biofertilizers that perform well in the laboratory and greenhouse conditions often fails to deliver the expected effects on plant development in field settings. Here we review the different types of PGPR-based biofertilizers, discuss the challenges faced in the widespread adoption of biofertilizers, and deliberate the prospects of using biofertilizers to promote sustainable agriculture.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Recent Understanding of Soil Acidobacteria and Their Ecological Significance: A Critical Review

              Acidobacteria represents an underrepresented soil bacterial phylum whose members are pervasive and copiously distributed across nearly all ecosystems. Acidobacterial sequences are abundant in soils and represent a significant fraction of soil microbial community. Being recalcitrant and difficult-to-cultivate under laboratory conditions, holistic, polyphasic approaches are required to study these refractive bacteria extensively. Acidobacteria possesses an inventory of genes involved in diverse metabolic pathways, as evidenced by their pan-genomic profiles. Because of their preponderance and ubiquity in the soil, speculations have been made regarding their dynamic roles in vital ecological processes viz., regulation of biogeochemical cycles, decomposition of biopolymers, exopolysaccharide secretion, and plant growth promotion. These bacteria are expected to have genes that might help in survival and competitive colonization in the rhizosphere, leading to the establishment of beneficial relationships with plants. Exploration of these genetic attributes and more in-depth insights into the belowground mechanics and dynamics would lead to a better understanding of the functions and ecological significance of this enigmatic phylum in the soil-plant environment. This review is an effort to provide a recent update into the diversity of genes in Acidobacteria useful for characterization, understanding ecological roles, and future biotechnological perspectives.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                28 July 2022
                2022
                : 13
                : 923360
                Affiliations
                [1] 1Department of Plant Pathology, Tamil Nadu Agricultural University , Coimbatore, India
                [2] 2Department of Plant Pathology, Faculty of Agriculture, Annamalai University , Chidambaram, India
                [3] 3Department of Biotechnology, Tamil Nadu Agricultural University , Coimbatore, India
                [4] 4Finnish Museum of Natural History, University of Helsinki , Helsinki, Finland
                [5] 5Department of Physiology, College of Medicine, King Khalid University Hospital, King Saud University , Riyadh, Saudi Arabia
                [6] 6Department of Botany, Hindu College, (Mahatma Jyotiba Phule Rohilkhand University, Bareilly) , Moradabad, India
                [7] 7Department of Microbiology, PSGVP Mandal’s S. I. Patil Arts, G. B. Patel Science, and STKV Sangh Commerce College , Shahada, India
                Author notes

                Edited by: Anukool Vaishnav, Agroscope, Switzerland

                Reviewed by: Eva Arrebola, University of Malaga, Spain; Younes Rezaee Danesh, Urmia University, Iran

                *Correspondence: A. Sudha, sudhaa1981@ 123456gmail.com

                This article was submitted to Microbe and Virus Interactions with Plants, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2022.923360
                9366667
                35966704
                066f9857-307c-4300-977f-e5b5f6d82eb8
                Copyright © 2022 Appusami, Durgadevi, Archana, Muthukumar, Suthin Raj, Nakkeeran, Poczai, Nasif, Ansari and Sayyed.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 April 2022
                : 27 June 2022
                Page count
                Figures: 7, Tables: 2, Equations: 3, References: 64, Pages: 15, Words: 9243
                Funding
                Funded by: Helsinki Institute of Life Science, Helsingin Yliopisto, doi 10.13039/100015735;
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                antifungal,grain mold,interaction,mvocs,sorghum,s. rochei
                Microbiology & Virology
                antifungal, grain mold, interaction, mvocs, sorghum, s. rochei

                Comments

                Comment on this article