5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bright Luminescence from Indirect and Strongly Bound Excitons in h-BN

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Electric Field Effect in Atomically Thin Carbon Films

          We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal.

            The demand for compact ultraviolet laser devices is increasing, as they are essential in applications such as optical storage, photocatalysis, sterilization, ophthalmic surgery and nanosurgery. Many researchers are devoting considerable effort to finding materials with larger bandgaps than that of GaN. Here we show that hexagonal boron nitride (hBN) is a promising material for such laser devices because it has a direct bandgap in the ultraviolet region. We obtained a pure hBN single crystal under high-pressure and high-temperature conditions, which shows a dominant luminescence peak and a series of s-like exciton absorption bands around 215 nm, proving it to be a direct-bandgap material. Evidence for room-temperature ultraviolet lasing at 215 nm by accelerated electron excitation is provided by the enhancement and narrowing of the longitudinal mode, threshold behaviour of the excitation current dependence of the emission intensity, and a far-field pattern of the transverse mode.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Intensity of Optical Absorption by Excitons

              R Elliott (1957)
                Bookmark

                Author and article information

                Journal
                PRLTAO
                Physical Review Letters
                Phys. Rev. Lett.
                American Physical Society (APS)
                0031-9007
                1079-7114
                February 2019
                February 12 2019
                : 122
                : 6
                Article
                10.1103/PhysRevLett.122.067401
                30822080
                067adb5a-04cf-473d-8cf5-704a9767886b
                © 2019

                https://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article