2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Platelet-Rich Fibrin Membrane for Pterygium Surgery: Literature Review and Feasibility Assessment

      review-article
      1 , 2 , , 3 , 2
      ,
      Cureus
      Cureus
      repair, ocular, surgery, platelet-rich membrane, pterygium

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pterygium is a common ocular disease caused by abnormal cellular proliferation leading to abnormal fibrovascular growth of the conjunctiva. The main treatment is surgical removal; however, despite the improvement of surgical techniques and development of adjuvant therapies, postoperative recurrence, which can be as high as 89%, remains a challenge. Currently, pterygium excision with conjunctival autograft remains the preferred surgical technique, although there is no gold standard technique to prevent pterygium recurrence. We have conducted a thorough and comprehensive review of the scientific literature regarding the use of PRF membranes in pterygium surgery. We aim to assess the safety, effectiveness, and applicability of platelet-rich fibrin membrane for primary pterygium surgery and assess its possible benefits in resource-limited settings.  

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution.

          Platelet-rich fibrin (PRF) belongs to a new generation of platelet concentrates geared to simplified preparation without biochemical blood handling. In this initial article, we describe the conceptual and technical evolution from fibrin glues to platelet concentrates. This retrospective analysis is necessary for the understanding of fibrin technologies and the evaluation of the biochemical properties of 3 generations of surgical additives, respectively fibrin adhesives, concentrated platelet-rich plasma (cPRP) and PRF. Indeed, the 3-dimensional fibrin architecture is deeply dependent on artificial clinical polymerization processes, such as massive bovine thrombin addition. Currently, the slow polymerization during PRF preparation seems to generate a fibrin network very similar to the natural one. Such a network leads to a more efficient cell migration and proliferation and thus cicatrization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane.

            L-PRF (leukocyte- and platelet-rich fibrin) is one of the four families of platelet concentrates for surgical use and is widely used in oral and maxillofacial regenerative therapies. The first objective of this article was to evaluate the mechanical vibrations appearing during centrifugation in four models of commercially available table-top centrifuges used to produce L-PRF and the impact of the centrifuge characteristics on the cell and fibrin architecture of a L-PRF clot and membrane. The second objective of this article was to evaluate how changing some parameters of the L-PRF protocol may influence its biological signature, independently from the characteristics of the centrifuge. In the first part, four different commercially available centrifuges were used to produce L-PRF, following the original L-PRF production method (glass-coated plastic tubes, 400 g force, 12 minutes). The tested systems were the original L-PRF centrifuge (Intra-Spin, Intra-Lock, the only CE and FDA cleared system for the preparation of L-PRF) and three other laboratory centrifuges (not CE/FDA cleared for L-PRF): A-PRF 12 (Advanced PRF, Process), LW-UPD8 (LW Scientific) and Salvin 1310 (Salvin Dental). Each centrifuge was opened for inspection, two accelerometers were installed (one radial, one vertical), and data were collected with a spectrum analyzer in two configurations (full-load or half load). All clots and membranes were collected into a sterile surgical box (Xpression kit, Intra-Lock). The exact macroscopic (weights, sizes) and microscopic (photonic and scanning electron microscopy SEM) characteristics of the L-PRF produced with these four different machines were evaluated. In the second part, venous blood was taken in two groups, respectively, Intra-Spin 9 ml glass-coated plastic tubes (Intra-Lock) and A-PRF 10 ml glass tubes (Process). Tubes were immediately centrifuged at 2700 rpm (around 400 g) during 12 minutes to produce L-PRF or at 1500 rpm during 14 minutes to produce A-PRF. All centrifugations were done using the original L-PRF centrifuge (Intra-Spin), as recommended by the two manufacturers. Half of the membranes were placed individually in culture media and transferred in a new tube at seven experimental times (up to 7 days). The releases of transforming growth factor β-1 (TGFβ-1), platelet derived growth factor AB (PDGF-AB), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2) were quantified using ELISA kits at these seven experimental times. The remaining membranes were used to evaluate the initial quantity of growth factors of the L-PRF and A-PRF membranes, through forcible extraction. Very significant differences in the level of vibrations at each rotational speed were observed between the four tested centrifuges. The original L-PRF centrifuge (Intra-Spin) was by far the most stable machine in all configurations and always remained under the threshold of resonance, unlike the three other tested machines. At the classical speed of production of L-PRF, the level of undesirable vibrations on the original centrifuge was between 4.5 and 6 times lower than with other centrifuges. Intra-Spin showed the lowest temperature of the tubes. A-PRF and Salvin were both associated with a significant increase in temperature in the tube. Intra-Spin produced the heaviest clot and quantity of exudate among the four techniques. A-PRF and LW produced much lighter, shorter and narrower clots and membranes than the two other centrifuges. Light microscopy analysis showed relatively similar features for all L-PRF types (concentration of cell bodies in the first half). However, SEM illustrated considerable differences between samples. The original Intra-Spin L-PRF showed a strongly polymerized thick fibrin matrix and all cells appeared alive with a normal shape, including the textured surface aspect of activated lymphocytes. The A-PRF, Salvin and LW PRF-like membranes presented a lightly polymerized slim fibrin gel and most of the visible cell bodies appeared destroyed (squashed or shrunk). In the second part of this study, the slow release of the three tested growth factors from original L-PRF membranes was significantly stronger (more than twice stronger, p<0.001) at all experimental times than the release from A-PRF membranes. No trace of BMP2 could be detected in the A-PRF. A slow release of BMP2 was detected during at least 7 days in the original L-PRF. Moreover, the original L-PRF clots and membranes (produced with 9 mL blood) were always significantly larger than the A-PRF (produced with 10 mL blood). The A-PRF membranes dissolved in vitro after less than 3 days, while the L-PRF membrane remained in good shape during at least 7 days. Each centrifuge has its clear own profile of vibrations depending on the rotational speed, and the centrifuge characteristics are directly impacting the architecture and cell content of a L-PRF clot. This result may reveal a considerable flaw in all the PRP/PRF literature, as this parameter was never considered. The original L-PRF clot (Intra-Spin) presented very specific characteristics, which appeared distorted when using centrifuges with a higher vibration level. A-PRF, LW and Salvin centrifuges produced PRF-like materials with a damaged and almost destroyed cell population through the standard protocol, and it is therefore impossible to classify these products in the L-PRF family. Moreover, when using the same centrifuge, the original L-PRF protocol allowed producing larger clots/membranes and a more intense release of growth factors (biological signature at least twice stronger) than the modified A-PRF protocol. Both protocols are therefore significantly different, and the clinical and experimental results from the original L-PRF shall not be extrapolated to the A-PRF. Finally, the comparison between the total released amounts and the initial content of the membrane (after forcible extraction) highlighted that the leukocytes living in the fibrin matrix are involved in the production of significant amounts of growth factors. The centrifuge characteristics and centrifugation protocols impact significantly and dramatically the cells, growth factors and fibrin architecture of L-PRF.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Role of Platelet rich fibrin in wound healing: A critical review

              Aim: The aim is to review and discuss the strategies available for use of platelet rich fibrin as healing aid in dentistry. Background: Platelet rich fibrin (PRF) is a fibrin matrix in which platelet cytokines, growth factors, and cells are trapped and may be released after a certain time and that can serve as a resorbable membrane. Choukroun and his associates were amongst the pioneers for using PRF protocol in oral and maxillofacial surgery to improve bone healing in implant dentistry. Autologous PRF is considered to be a healing biomaterial, and presently, studies have shown its application in various disciplines of dentistry. Materials and Methods: By using specific keywords, electronic search of scientific papers was carried out on the entire PubMed database with custom range of 5 years. The electronic search yielded 302 papers; based on inclusion and exclusion criteria which were specifically predetermined, 72 papers were identified as suitable to the inclusion criteria and the remaining 230 papers were excluded. After adding three more selected papers through hand search, full text of all the articles retrieved and review was done. By pooling the extracted data from selected papers, the reviewed data was synthesized. Conclusion: Recently by showing good promising results with use of the PRF, it has proved to have a good prospect for its use as healing aid in various aspects of the dentistry.
                Bookmark

                Author and article information

                Journal
                Cureus
                Cureus
                2168-8184
                Cureus
                Cureus (Palo Alto (CA) )
                2168-8184
                11 September 2021
                September 2021
                : 13
                : 9
                : e17884
                Affiliations
                [1 ] Ophthalmology Department, Universidad San Francisco de Quito, Quito, ECU
                [2 ] “Incubadora de Investigación en Medicina" (InMed), NeurALL Nest, Quito, ECU
                [3 ] Research Department, Medical School, Faculty of Health and Life Sciences, Universidad Internacional del Ecuador, Quito, ECU
                Author notes
                Carolina Camacho caro1933@ 123456msn.com
                Article
                10.7759/cureus.17884
                8503701
                06d17f49-c002-491c-b9bb-b9c807ea6577
                Copyright © 2021, Camacho et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 11 September 2021
                Categories
                Ophthalmology
                Epidemiology/Public Health
                Therapeutics

                repair,ocular,surgery,platelet-rich membrane,pterygium
                repair, ocular, surgery, platelet-rich membrane, pterygium

                Comments

                Comment on this article