2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Variable osteogenic performance of MC3T3-E1 subclones impacts their utility as models of osteoblast biology

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The spontaneously immortalized murine calvarial cell line MC3T3-E1 and its derivative subclones are widely used models of osteoblast biology. Many investigators have reported conflicting data under seemingly similar experimental conditions, though the specific subclone studied is often not specified. The purpose of this study was to directly compare the commercially available MC3T3-E1 subclones 4, 14, and 24 in terms of responsiveness to osteogenic induction media and/or stimulation with rhPTH[1–34]. We assayed osteogenic gene expression, capacity to deposit and mineralize a collagenous matrix, and the expression and signaling function of PTH1R. Our data demonstrate that each subclone bears little functional resemblance to the others, or to primary calvarial osteoblasts. Specifically, whereas subclone 4 is responsive to PTH stimulation and capable of matrix mineralization, subclones 14 and 24 do not faithfully replicate these key aspects of osteoblast biology. Furthermore, little overlap was observed between the gene expression profile of subclone 4 and primary calvarial osteoblasts. Our experience working with these cell lines demonstrates that the MC3T3-E1 derived cell lines are imperfect models of osteoblast biology, and reinforce the importance of clearly articulating selection and reporting of research materials.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria

          We investigated the capacity of a clonal osteogenic cell line MC3T3-E1, established from newborn mouse calvaria and selected on the basis of high alkaline phosphatase (ALP) activity in the confluent state, to differentiate into osteoblasts and mineralize in vitro. The cells in the growing state showed a fibroblastic morphology and grew to form multiple layers. On day 21, clusters of cells exhibiting typical osteoblastic morphology were found in osmiophilic nodular regions. Such nodules increased in number and size with incubation time and became easily identifiable with the naked eye by day 40-50. In the central part of well-developed nodules, osteocytes were embedded in heavily mineralized bone matrix. Osteoblasts were arranged at the periphery of the bone spicules and were surrounded by lysosome-rich cells and a fibroblastic cell layer. Numerous matrix vesicles were scattered around the osteoblasts and young osteocytes. Matrix vesicles and plasma membranes of osteoblasts, young osteocytes, and lysosome-rich cells showed strong reaction to cytochemical stainings for ALP activity and calcium ions. Minerals were initially localized in the matrix vesicles and then deposited on well-banded collagen fibrils. Deposited minerals consisted exclusively of calcium and phosphorus, and some of the crystals had matured into hydroxyapatite crystals. These results indicate that MC3T3-E1 cells have the capacity to differentiate into osteoblasts and osteocytes and to form calcified bone tissue in vitro.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development.

            We examine clonal murine calvarial MC3T3-E1 cells to determine if they exhibit a developmental sequence similar to osteoblasts in bone tissue, namely, proliferation of undifferentiated osteoblast precursors followed by postmitotic expression of differentiated osteoblast phenotype. During the initial phase of developmental (days 1-9 of culture), MC3T3-E1 cells actively replicate, as evidenced by the high rates of DNA synthesis and progressive increase in cell number, but maintain a fusiform appearance, fail to express alkaline phosphatase, and do not accumulate mineralized extracellular collagenous matrix, consistent with immature osteoblasts. By day 9 the cultures display cuboidal morphology, attain confluence, and undergo growth arrest. Downregulation of replication is associated with expression of osteoblast functions, including production of alkaline phosphatase, processing of procollagens to collagens, and incremental deposition of a collagenous extracellular matrix. Mineralization of extracellular matrix, which begins approximately 16 days after culture, marks the final phase of osteoblast phenotypic development. Expression of alkaline phosphatase and mineralization is time but not density dependent. Type I collagen synthesis and collagen accumulation are uncoupled in the developing osteoblast. Although collagen synthesis and message expression peaks at day 3 in immature cells, extracellular matrix accumulation is minimal. Instead, matrix accumulates maximally after 7 days of culture as collagen biosynthesis is diminishing. Thus, extracellular matrix formation is a function of mature osteoblasts. Ascorbate and beta-glycerol phosphate are both essential for the expression of osteoblast phenotype as assessed by alkaline phosphatase and mineralization of extracellular matrix. Ascorbate does not stimulate type I collagen gene expression in MC3T3-E1 cells, but it is absolutely required for deposition of collagen in the extracellular matrix. Ascorbate also induces alkaline phosphatase activity in mature cells but not in immature cells. beta-glycerol phosphate displays synergistic actions with ascorbate to further stimulate collagen accumulation and alkaline phosphatase activity in postmitotic, differentiated osteoblast-like cells. Mineralization of mature cultures requires the presence of beta-glycerol phosphate. Thus, MC3T3-E1 cells display a time-dependent and sequential expression of osteoblast characteristics analogous to in vivo bone formation. The developmental sequence associated with MC3T3-E1 differentiation should provide a useful model to study the signals that mediate the switch between proliferation and differentiation in bone cells, as well as provide a renewable culture system to examine the molecular mechanism of osteoblast maturation and the formation of bone-like extracellular matrix.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use.

              All therapies currently recommended for the management of osteoporosis act mainly to inhibit bone resorption and reduce bone remodeling. PTH and its analog, teriparatide [recombinant human PTH(1-34)], represent a new class of anabolic therapies for the treatment of severe osteoporosis, having the potential to improve skeletal microarchitecture. Significant reductions in both vertebral and appendicular fracture rates have been demonstrated in the phase III trial of teriparatide, involving elderly women with at least one prevalent vertebral fracture before the onset of therapy. However, there is as yet no evidence that the antifracture efficacy of PTH will be superior to the bisphosphonates, whereas cost-utility estimates suggest that teriparatide is significantly more expensive. Teriparatide should be considered as treatment for postmenopausal women and men with severe osteoporosis, as well as for patients with established glucocorticoid-induced osteoporosis who require long-term steroid treatment. Teriparatide should also be considered for the management of individuals at particularly high risk for fractures, including subjects who are younger than age 65 and who have particularly low bone mineral density measurements (T scores < or = 3.5). Teriparatide therapy is not recommended for more than 2 yr, based, in part, on the induction of osteosarcoma in a rat model of carcinogenicity. Total daily calcium intake from both supplements and dietary sources should be limited to 1500 mg together with adequate vitamin D intake (< or =1000 U/d). Monitoring of serum calcium may be safely limited to measurement after 1 month of treatment; mild hypercalcemia may be treated by withdrawing dietary calcium supplements, reducing the dosing frequency of PTH, or both. At present, concurrent therapy with antiresorptive therapy, particularly bisphosphonates, should be avoided, although sequential therapy with such agents may consolidate the beneficial effects upon the skeleton after PTH is discontinued.
                Bookmark

                Author and article information

                Contributors
                hortonj@upstate.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                5 June 2019
                5 June 2019
                2019
                : 9
                : 8299
                Affiliations
                [1 ]ISNI 0000 0000 9159 4457, GRID grid.411023.5, Department of Orthopedic Surgery, , SUNY Upstate Medical University, ; Syracuse, NY 13210 USA
                [2 ]ISNI 0000 0000 9159 4457, GRID grid.411023.5, College of Medicine, MD Program, , SUNY Upstate Medical University, ; Syracuse, NY 13210 USA
                Author information
                http://orcid.org/0000-0003-3396-5063
                Article
                44575
                10.1038/s41598-019-44575-8
                6549152
                31165768
                06ee70cf-cee2-4bb4-95c0-cc61e86a2f57
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 November 2018
                : 13 May 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000069, U.S. Department of Health &amp; Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS);
                Award ID: AR066737
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                differentiation,growth factor signalling,bone development
                Uncategorized
                differentiation, growth factor signalling, bone development

                Comments

                Comment on this article