Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      3D Bioprinted Scaffolds for Bone Tissue Engineering: State-Of-The-Art and Emerging Technologies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Treating large bone defects, known as critical-sized defects (CSDs), is challenging because they are not spontaneously healed by the patient’s body. Due to the limitations associated with conventional bone grafts, bone tissue engineering (BTE), based on three-dimensional (3D) bioprinted scaffolds, has emerged as a promising approach for bone reconstitution and treatment. Bioprinting technology allows for incorporation of living cells and/or growth factors into scaffolds aiming to mimic the structure and properties of the native bone. To date, a wide range of biomaterials (either natural or synthetic polymers), as well as various cells and growth factors, have been explored for use in scaffold bioprinting. However, a key challenge that remains is the fabrication of scaffolds that meet structure, mechanical, and osteoconductive requirements of native bone and support vascularization. In this review, we briefly present the latest developments and discoveries of CSD treatment by means of bioprinted scaffolds, with a focus on the biomaterials, cells, and growth factors for formulating bioinks and their bioprinting techniques. Promising state-of-the-art pathways or strategies recently developed for bioprinting bone scaffolds are highlighted, including the incorporation of bioactive ceramics to create composite scaffolds, the use of advanced bioprinting technologies ( e.g., core/shell bioprinting) to form hybrid scaffolds or systems, as well as the rigorous design of scaffolds by taking into account of the influence of such parameters as scaffold pore geometry and porosity. We also review in-vitro assays and in-vivo models to track bone regeneration, followed by a discussion of current limitations associated with 3D bioprinting technologies for BTE. We conclude this review with emerging approaches in this field, including the development of gradient scaffolds, four-dimensional (4D) printing technology via smart materials, organoids, and cell aggregates/spheroids along with future avenues for related BTE.

          Related collections

          Most cited references225

          • Record: found
          • Abstract: found
          • Article: not found

          3D bioprinting of tissues and organs.

          Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            3D printing of polymer matrix composites: A review and prospective

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A 3D bioprinting system to produce human-scale tissue constructs with structural integrity

              A challenge for tissue engineering is producing three-dimensional (3D), vascularized cellular constructs of clinically relevant size, shape and structural integrity. We present an integrated tissue-organ printer (ITOP) that can fabricate stable, human-scale tissue constructs of any shape. Mechanical stability is achieved by printing cell-laden hydrogels together with biodegradable polymers in integrated patterns and anchored on sacrificial hydrogels. The correct shape of the tissue construct is achieved by representing clinical imaging data as a computer model of the anatomical defect and translating the model into a program that controls the motions of the printer nozzles, which dispense cells to discrete locations. The incorporation of microchannels into the tissue constructs facilitates diffusion of nutrients to printed cells, thereby overcoming the diffusion limit of 100-200 μm for cell survival in engineered tissues. We demonstrate capabilities of the ITOP by fabricating mandible and calvarial bone, cartilage and skeletal muscle. Future development of the ITOP is being directed to the production of tissues for human applications and to the building of more complex tissues and solid organs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                11 April 2022
                2022
                : 10
                : 824156
                Affiliations
                [1] 1 Division of Biomedical Engineering , College of Engineering , University of Saskatchewan , Saskatoon, SK, Canada
                [2] 2 Department of Mechanical Engineering , College of Engineering , University of Saskatchewan , Saskatoon, SK, Canada
                [3] 3 Department of Anatomy Physiology and Pharmacology , College of Medicine , University of Saskatchewan , Saskatoon, SK, Canada
                Author notes

                Edited by: Andrea Vernengo, AO Research Institute, Switzerland

                Reviewed by: Francesco Baino, Politecnico di Torino, Italy

                Silvia Fare’, Politecnico di Milano, Italy

                *Correspondence: Zahra Yazdanpanah, zay413@ 123456mail.usask.ca

                This article was submitted to Biomaterials, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                824156
                10.3389/fbioe.2022.824156
                9035802
                35480972
                e896dfb5-f732-402e-998d-1361fc7a8423
                Copyright © 2022 Yazdanpanah, Johnston, Cooper and Chen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 November 2021
                : 03 March 2022
                Funding
                Funded by: Natural Sciences and Engineering Research Council of Canada , doi 10.13039/501100000038;
                Categories
                Bioengineering and Biotechnology
                Review

                bioprinting,3d printing,bone tissue engineering,scaffold,critical-sized defect

                Comments

                Comment on this article