6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cetacean Host-Pathogen Interaction(s): Critical Knowledge Gaps

      discussion

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Within the broad range of viral and non-viral pathogens infecting cetaceans, Cetacean Morbillivirus (CeMV), Herpesvirus (HV), Brucella ceti, and Toxoplasma gondii are of special concern, due to their impact(s) on the health and conservation of free-ranging cetacean populations worldwide (1). The most “paradigmatic” example in this direction is represented by CeMV, which throughout the last 3 decades has caused more than 10 mass mortality outbreaks among different cetacean species and populations across the globe (2, 3). Cetaceans live permanently in the marine environment, a peculiar feature differentiating them from pinnipeds, that are also susceptible to morbilliviral infections. This has been clearly shown, for instance, by the dramatic Phocine/Phocid Distemper Virus (PDV) and Canine Distemper Virus (CDV) epidemics among North Sea common seals (Phoca vitulina) and Lake Bajkal seals (Pusa siberica) as well as Caspian seals (Pusa caspica), respectively (4). Due to their “in-water-only” life, stranded cetaceans play a key role as “sentinels” (potentially) able to “recapitulate” the “natural history, evolution, ecology, epidemiology, and encounters” of infectious noxae, on one side, and cetacean hosts, on the other. Consequently, based upon their crucial relevance as “health and conservation biomonitors” for their increasingly threatened “conspecifics and heterospecifics” living in the open sea, a detailed post-mortem examination of stranded cetaceans on behalf of specifically trained veterinarians is mandatory! These concepts are nicely exemplified by the motto “Hic est locus ubi mors gaudet succurrere vitae.” This phrase, written in the nineteenth century by Luciano Armanni—the co-discoverer of “Armanni-Ebstein Diabetic Nephropathy” (5) -, stands at the entrance of the autopsy room of “Ospedale degli Incurabili” in Naples, Italy. Literally translated, it means “This is the place where death is pleased to support life.” Taking into consideration all the above, we believe there are still a number of critical “knowledge gaps” regarding “cetacean host(s)-pathogen(s) interaction(s),” with special emphasis on the 4 herein dealt infectious noxae and, most likely, also in relation to any other pathogen infecting wild cetaceans. These “knowledge-deficient areas” may be identified as follows: (1) characterization of the cell receptor(s) allowing infection; (2) interaction(s) and effects of chemical pollutants on the expression levels of the aforementioned cell receptors; (3) pathogenetic evolution of the concerned infections in T helper 1 (Th1)-dominant versus (vs.) Th2-dominant cetacean individuals; (4) effects of pregnancy-associated immune status on the infectious potential of the herein dealt pathogens; (5) usefulness of cetaceans and their pathogens as models for human disease. The present Opinion Article, after a brief introduction on these 5 issues, will critically address each of the aforementioned knowledge gaps. As far as issue (1) is specifically concerned, CeMV, HV, B. ceti, and T. gondii may infect several cetacean hosts, with the latter 2 agents also carrying a zoonotic potential (1). Since different tissues from susceptible cetaceans may be colonized by the 4 herein dealt pathogens (1, 2), a detailed characterization of the cell receptor(s) allowing their entry into (and subsequent shedding from) host's tissues would be of paramount relevance. In this respect, as with other animal and human morbilliviruses, the lymphotropic behavior typically displayed by CeMV is specified by the lymphoid cell receptor “Signaling Lymphocyte Activation Molecule” (SLAM/CD150) (2). Notwithstanding the above, the cell receptor(s) targeted by this lympho-epithelio-neurotropic virus within the central nervous system (CNS) from susceptible cetacean hosts is/are still unknown (6, 7). Noteworthy, striped dolphins (Stenella coeruleoalba) infected by Dolphin Morbillivirus (DMV, a CeMV strain) may occasionally develop a peculiar, “brain-only” form of infection sharing neuropathologic similarities with “Subacute Sclerosing Panencephalitis” (SSPE) and “Old Dog Encephalitis” (ODE) in Measles Virus (MeV)-infected humans and CDV-infected canines, respectively (2, 8–10). Despite the recent characterization of the neuronal and non-neuronal cell populations residing in the brain from striped dolphins affected by such neuropathy (11), the receptor(s) allowing viral persistence and spread within their brains—as well as in those from SSPE-afflicted patients and ODE-affected dogs—is/are also undetermined (6, 7, 12). Identical considerations apply to HV, B. ceti, and T. gondii, provided that the cell receptor(s) allowing their entry into and subsequent dissemination throughout cetacean hosts' tissues have not been yet identified, to the best of our knowledge. Making specific reference to B. ceti, the host's cellular prion protein (PrPC) has been recently hypothesized to serve as a neuronal cell receptor for this zoonotic microorganism causing fatal neurobrucellosis in striped dolphins (13). Indeed, PrPC had been previously recognized as a receptor for B. abortus heat shock protein (HSP)60—a member of the GroEL family of chaperonins—on murine macrophages, thereby allowing bacterial internalization and establishment of B. abortus infection inside these cells (14). As far as concerns issue (2), it is well established that a wide range of persistent environmental pollutants may heavily accumulate in cetacean tissues, especially in those of “top predators” like dolphins and other Odontocetes, with simultaneous “biomagnification” processes additionally occurring in most cases (15). Many of these pollutants, as in the case of lipophilic polychlorinated biphenyls (PCBs), dioxins and dioxin-like substances, along with methylmercury (MeHg), have also been shown to exert powerful immunotoxic effects (16). Notwithstanding the above, we are not aware of any study investigating the relationship(s), if any, between pollutant-related immunotoxicity, on one side, and the tissue expression profiles, on the other, of given cell receptors (e.g., SLAM/CD150) for highly immunosuppressive agents like CeMV (6). This should be regarded as another critical knowledge gap within the general framework of “cetacean host(s)-pathogen(s) interaction dynamics.” Within such context, the growing concerns over the exponentially increasing plastic pollution of oceans and seas across the entire globe should be also taken into account. As a matter of fact, relevant health- and conservation-related issues arise for fish, birds and aquatic mammals, due to their prolonged exposure to micro-nanoplastics through the marine food web(s). Furthermore, the documented roles of “plastic debris” as an “attractor and concentrator” for many persistent pollutants like PCBs, dioxins and other organochlorine (OC) and non-OC compounds (15), as well as for a huge number of invertebrate organisms (17), would deserve special consideration. In this respect, plastics/micro-nanoplastics-based “rafts” have been recently hypothesized to play a role also in the ecology and epidemiology of T. gondii infection (18). This could be of interest, provided that the Scientific Community has not yet clarified by which modalities and dynamics striped dolphins and other typically “pelagic” or “offshore” cetaceans may acquire an “oro-faecally transmitted infection” characterized by a “land-to-sea flow,” as in the case of that caused by the zoonotic protozoan T. gondii (19). As far as issue (3) is specifically concerned, among the many lessons provided by natural history of Human Immunodeficiency Virus (HIV) infection in mankind, we have learned that Th2-dominant patients are much more prone than their Th1-dominant “counterparts” to develop “full-blown AIDS” (“Acquired Immunodeficiency Syndrome”) in the time course of HIV infection (20). In this respect, while in recent years we have also learned quite a bit on the pathogenetic evolution of other human and animal viral and non-viral infections in Th1-dominant vs. Th2-dominant individuals, we are unaware, on the contrary, of any published reports dealing with the pathogenetic behavior of CeMV infection—as well as of HV, T. gondii, and B. ceti infections—among Th1-dominant vs. Th2-dominant cetacean hosts. This could of relevance also in relation to issue (4), given that a reduced efficiency of host's immune response is physiologically observed during pregnancy (21). Indeed, several cases of DMV infection have been recently described both in newborns and in cetacean fetuses (6, 22–24). This concern and its related knowledge gap are additionally amplified by the documented occurrence of cases of DMV infection in cetacean species—mainly from the Western Mediterranean Sea—into which the virus has apparently “jumped,” most likely as the result of recent “spillovers” from DMV-infected striped dolphins (22–24). Finally, with specific reference to the last of the 5 herein dealt issues, the potential role of cetaceans as “models for human disease” should be also taken into account (25). In fact, as recently reported for Alzheimer's disease-related neuropathology in striped and bottlenose dolphins (Tursiops truncatus) (26, 27), and as previously described for the aforementioned “brain-only” forms of DMV infection among striped dolphins (6, 8–10), cetaceans and—more in general—aquatic mammals could serve as valuable “models” also in “Comparative Immunology and Immunopathology.” This could apply, in parallel with the herein dealt “host(s)-pathogen(s) interaction dynamics,” also to the “ontogeny” and “evolutionary phylogeny” of cetaceans' immune response as well as to further key issues like “immune tolerance,” “autoimmunity,” and “immune surveillance against neoplasia,” just to cite a few. In conclusion, deepening our understanding of “host(s)-pathogen(s) interaction(s)” in cetaceans and, more broadly, in marine mammals, may provide not only a very useful and insightful “set of tools” to monitor and protect their increasingly threatened health and conservation, but also a reliable and precious source of knowledge highlighting the simultaneous role of cetaceans as putative “models for human (and animal) disease” as well as for “Comparative Immunology and Immunopathology.” Author contributions GDG wrote the first draft as well as the first revision's draft of the present Opinion Article, to be included in the Research Topic Comparative Immunology of Marine Mammals, with CC and SM subsequently integrating and providing a thorough and critical revision of both the aforementioned manuscript's drafts. Conflict of interest statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          T-cell subsets (Th1 versus Th2).

          To understand the current status of knowledge in the basic field of polarized specific immune responses mediated by CD4+ T helper (Th) lymphocytes, based on their profile of cytokine production (type 1 or Th1 and type 2 or Th2). Relevant articles and publications from the medical literature, especially review articles dealing with properties, mechanisms of polarization, transcription regulatory factors, and role in different human pathophysiological conditions of Th1 and Th2 cells. Th1 cells, which produce interferon (IFN)-gamma, interleukin (IL)-2 and tumor necrosis factor (TNF)-beta, evoke cell-mediated immunity and phagocyte-dependent inflammation. Th2 cells, which produce IL-4, IL-5, IL-6, IL-9, IL-10, and IL-13, evoke strong antibody responses (including those of the IgE class) and eosinophil accumulation, but inhibit several functions of phagocytic cells (phagocyte-independent inflammation). Both environmental and genetic factors act in concert to determine the Th1 or Th2 polarization. Further, Th1-dominated responses are involved in the pathogenesis of organ-specific autoimmune disorders, Crohn's disease, sarcoidosis, acute kidney allograft rejection, and some unexplained recurrent abortions. In contrast, allergen-specific Th2 responses are responsible for atopic disorders in genetically susceptible individuals. Further, Th2-dominated responses play a pathogenic role in both progressive systemic sclerosis and cryptogenic fibrosing alveolitis, and favor a more rapid evolution of HIV infection towards the full-blown disease. Finally, the Th1/Th2 paradigm can provide the basis for the development of new types of vaccines against infectious agents and of novel strategies for the therapy of allergic and autoimmune disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Th1:Th2 Dichotomy of Pregnancy and Preterm Labour

            Pregnancy is a unique immunological state in which a balance of immune tolerance and suppression is needed to protect the fetus without compromising the mother. It has long been established that a bias from the T helper 1 cytokine profile towards the T helper 2 profile contributes towards successful pregnancy maintenance. The majority of publications that report on aberrant Th1:Th2 balance focus on early pregnancy loss and preeclampsia. Over the last few decades, there has been an increased awareness of the role of infection and inflammation in preterm labour, and the search for new biomarkers to predict preterm labour continues. In this paper, we explore the evidence for an aberrant Th1:Th2 profile associated with preterm labour. We also consider the potential for its use in screening women at high risk of preterm labour and for prophylactic therapeutic measures for the prevention of preterm labour and associated neonatal adverse outcomes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Tsunami-driven rafting: Transoceanic species dispersal and implications for marine biogeography

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                28 November 2018
                2018
                : 9
                : 2815
                Affiliations
                [1] 1Faculty of Veterinary Medicine, University of Teramo , Teramo, Italy
                [2] 2Department of Comparative Biomedicine and Food Science, University of Padua , Padova, Italy
                Author notes

                Edited by: Fabrizio Ceciliani, Università degli Studi di Milano, Italy

                Reviewed by: Francisco Javier Aznar, University of Valencia, Spain

                *Correspondence: Giovanni Di Guardo gdiguardo@ 123456unite.it

                This article was submitted to Comparative Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2018.02815
                6279917
                30546370
                06fc18b8-7df5-493a-b175-85ea776925af
                Copyright © 2018 Di Guardo, Centelleghe and Mazzariol.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 September 2018
                : 14 November 2018
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 27, Pages: 3, Words: 2491
                Categories
                Immunology
                Opinion

                Immunology
                cetaceans,cetacean morbillivirus,herpesvirus,brucella ceti,toxoplasma gondii,host-pathogen interaction,cell receptors,immunotoxic pollutants

                Comments

                Comment on this article