25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Mechanisms for the Regulation of Insulin-Stimulated Glucose Uptake by Small Guanosine Triphosphatases in Skeletal Muscle and Adipocytes

      review-article
      International Journal of Molecular Sciences
      MDPI
      adipocyte, glucose uptake, GLUT4, insulin, skeletal muscle, small GTPase

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Insulin is a hormone that regulates the blood glucose level by stimulating various physiological responses in its target tissues. In skeletal muscle and adipose tissue, insulin promotes membrane trafficking of the glucose transporter GLUT4 from GLUT4 storage vesicles to the plasma membrane, thereby facilitating the uptake of glucose from the circulation. Detailed mechanisms underlying insulin-dependent intracellular signal transduction for glucose uptake remain largely unknown. In this article, I give an overview on the recently identified signaling network involving Rab, Ras, and Rho family small guanosine triphosphatases (GTPases) that regulates glucose uptake in insulin-responsive tissues. In particular, the regulatory mechanisms for these small GTPases and the cross-talk between protein kinase and small GTPase cascades are highlighted.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          PI3K signalling: the path to discovery and understanding.

          Over the past two decades, our understanding of phospoinositide 3-kinases (PI3Ks) has progressed from the identification of an enzymatic activity associated with growth factors, GPCRs and certain oncogene products to a disease target in cancer and inflammation, with PI3K inhibitors currently in clinical trials. Elucidation of PI3K-dependent networks led to the discovery of the phosphoinositide-binding PH, PX and FYVE domains as conduits of intracellular lipid signalling, the determination of the molecular function of the tumour suppressor PTEN and the identification of AKT and mTOR protein kinases as key regulators of cell growth. Here we look back at the main discoveries that shaped the PI3K field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver.

            The earliest defect in developing type 2 diabetes is insulin resistance, characterized by decreased glucose transport and metabolism in muscle and adipocytes. The glucose transporter GLUT4 mediates insulin-stimulated glucose uptake in adipocytes and muscle by rapidly moving from intracellular storage sites to the plasma membrane. In insulin-resistant states such as obesity and type 2 diabetes, GLUT4 expression is decreased in adipose tissue but preserved in muscle. Because skeletal muscle is the main site of insulin-stimulated glucose uptake, the role of adipose tissue GLUT4 downregulation in the pathogenesis of insulin resistance and diabetes is unclear. To determine the role of adipose GLUT4 in glucose homeostasis, we used Cre/loxP DNA recombination to generate mice with adipose-selective reduction of GLUT4 (G4A-/-). Here we show that these mice have normal growth and adipose mass despite markedly impaired insulin-stimulated glucose uptake in adipocytes. Although GLUT4 expression is preserved in muscle, these mice develop insulin resistance in muscle and liver, manifested by decreased biological responses and impaired activation of phosphoinositide-3-OH kinase. G4A-/- mice develop glucose intolerance and hyperinsulinaemia. Thus, downregulation of GLUT4 and glucose transport selectively in adipose tissue can cause insulin resistance and thereby increase the risk of developing diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rabs and their effectors: achieving specificity in membrane traffic.

              Rab proteins constitute the largest branch of the Ras GTPase superfamily. Rabs use the guanine nucleotide-dependent switch mechanism common to the superfamily to regulate each of the four major steps in membrane traffic: vesicle budding, vesicle delivery, vesicle tethering, and fusion of the vesicle membrane with that of the target compartment. These different tasks are carried out by a diverse collection of effector molecules that bind to specific Rabs in their GTP-bound state. Recent advances have not only greatly extended the number of known Rab effectors, but have also begun to define the mechanisms underlying their distinct functions. By binding to the guanine nucleotide exchange proteins that activate the Rabs certain effectors act to establish positive feedback loops that help to define and maintain tightly localized domains of activated Rab proteins, which then serve to recruit other effector molecules. Additionally, Rab cascades and Rab conversions appear to confer directionality to membrane traffic and couple each stage of traffic with the next along the pathway.
                Bookmark

                Author and article information

                Contributors
                Role: External Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                16 October 2014
                October 2014
                : 15
                : 10
                : 18677-18692
                Affiliations
                Laboratory of Cell Biology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan; E-Mail: tkysato@ 123456b.s.osakafu-u.ac.jp ; Tel./Fax: +81-72-254-7650.
                Article
                ijms-15-18677
                10.3390/ijms151018677
                4227239
                25325535
                07dda76b-a804-4466-b996-599c8aa34464
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 August 2014
                : 28 September 2014
                : 30 September 2014
                Categories
                Review

                Molecular biology
                adipocyte,glucose uptake,glut4,insulin,skeletal muscle,small gtpase
                Molecular biology
                adipocyte, glucose uptake, glut4, insulin, skeletal muscle, small gtpase

                Comments

                Comment on this article