31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of Micro-mixing on the Size of Liposomes Self-Assembled from Miscible Liquid Phases

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ethanol injection and variations of it are a class of methods where two miscible phases---one of which contains dissolved lipids---are mixed together leading to the self-assembly of lipid molecules to form liposomes. This method has been suggested, among other applications, for in-situ synthesis of liposomes as drug delivery capsules. However, the mechanism that leads to a specific size selection of the liposomes in solution based self-assembly in general, and in flow-focussing microfluidic devices in particular, has so far not been established. Here we report two aspects of this problem. A simple and easily fabricated device for synthesis of monodisperse unilamellar liposomes in a co-axial flow-focussing microfluidic geometry is presented. We also show that the size of liposomes is dependent on the extent of micro-convective mixing of the two miscible phases. Here, a viscosity stratification induced hydrodynamic instability leads to a gentle micro-mixing which results in larger liposome size than when the streams are mixed turbulently. The results are in sharp contrast to a purely diffusive mixing in macroscopic laminar flow that was believed to occur under these conditions. Further precise quantification of the mixing characteristics should provide the insights to develop a general theory for size selection for the class of ethanol injection methods. This will also lay grounds for obtaining empirical evidence that will enable better control of liposome sizes and for designing drug encapsulation and delivery devices.

          Related collections

          Author and article information

          Journal
          2013-01-12
          2013-05-11
          Article
          1301.2700
          14467956-8828-430e-92c7-3312cf1032de

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          11 pages, 14 Figures
          cond-mat.soft

          Condensed matter
          Condensed matter

          Comments

          Comment on this article