7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Full-Length Transcriptome Assembly of Italian Ryegrass Root Integrated with RNA-Seq to Identify Genes in Response to Plant Cadmium Stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cadmium (Cd) is a toxic heavy metal element. It is relatively easily absorbed by plants and enters the food chain, resulting in human exposure to Cd. Italian ryegrass ( Lolium multiflorum Lam.), an important forage cultivated widely in temperate regions worldwide, has the potential to be used in phytoremediation. However, genes regulating Cd translocation and accumulation in this species are not fully understood. Here, we optimized PacBio ISO-seq and integrated it with RNA-seq to construct a de novo full-length transcriptomic database for an un-sequenced autotetraploid species. With the database, we identified 2367 differentially expressed genes (DEGs) and profiled the molecular regulatory pathways of Italian ryegrass with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in response to Cd stress. Overexpression of a DEG LmAUX1 in Arabidopsis thaliana significantly enhanced plant Cd concentration. We also unveiled the complexity of alternative splicing (AS) with a genome-free strategy. We reconstructed full-length UniTransModels using the reference transcriptome, and 29.76% of full-length models had more than one isoform. Taken together, the results enhanced our understanding of the genetic diversity and complexity of Italian ryegrass under Cd stress and provided valuable genetic resources for its gene identification and molecular breeding.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Assessment of transcript reconstruction methods for RNA-seq

            RNA sequencing (RNA-seq) is transforming genome biology, enabling comprehensive transcriptome profiling with unprecendented accuracy and detail. Due to technical limitations of current high-throughput sequencing platforms, transcript identity, structure and expression level must be inferred programmatically from partial sequence reads of fragmented gene products. We evaluated 24 protocol variants of 14 independent computational methods for exon identification, transcript reconstruction and expression level quantification from RNA-seq data. Our results show that most algorithms are able to identify discrete transcript components with high success rates, but that assembly of complete isoform structures poses a major challenge even when all constituent elements are identified. Expression level estimates also varied widely across methods, even when based on similar transcript models. Consequently, the complexity of higher eukaryotic genomes imposes severe limitations in transcript recall and splice product discrimination that are likely to remain limiting factors for the analysis of current-generation RNA-seq data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods.

              Arsenic, cadmium, lead, and mercury are toxic elements that are almost ubiquitously present at low levels in the environment because of anthropogenic influences. Dietary intake of plant-derived food represents a major fraction of potentially health-threatening human exposure, especially to arsenic and cadmium. In the interest of better food safety, it is important to reduce toxic element accumulation in crops. A molecular understanding of the pathways responsible for this accumulation can enable the development of crop varieties with strongly reduced concentrations of toxic elements in their edible parts. Such understanding is rapidly progressing for arsenic and cadmium but is in its infancy for lead and mercury. Basic discoveries have been made in Arabidopsis, rice, and other models, and most advances in crops have been made in rice. Proteins mediating the uptake of arsenic and cadmium have been identified, and the speciation and biotransformations of arsenic are now understood. Factors controlling the efficiency of root-to-shoot translocation and the partitioning of toxic elements through the rice node have also been identified.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                06 February 2020
                February 2020
                : 21
                : 3
                : 1067
                Affiliations
                College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; 2016216002@ 123456njau.edu.cn (Z.H.); 2018116014@ 123456njau.edu.cn (Y.Z.); 2018116015@ 123456njau.edu.cn (Y.H.); 2016116018@ 123456njau.edu.cn (Q.C.); 2016116017@ 123456njau.edu.cn (T.Z.); qscai@ 123456njau.edu.cn (Q.C.)
                Author notes
                [* ]Correspondence: loulq@ 123456njau.edu.cn ; Tel.: +86-25-84396408
                Article
                ijms-21-01067
                10.3390/ijms21031067
                7037684
                32041113
                09245c70-3c0f-49d1-be1f-a3a5a60f5bfe
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 22 December 2019
                : 04 February 2020
                Categories
                Article

                Molecular biology
                alternative splicing,cadmium,italian ryegrass root,transcriptome,lmaux1
                Molecular biology
                alternative splicing, cadmium, italian ryegrass root, transcriptome, lmaux1

                Comments

                Comment on this article