31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Linkage Map of the Zebra FinchTaeniopygia guttataProvides New Insights Into Avian Genome Evolution

      , , ,
      Genetics
      Genetics Society of America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Passeriformes are the largest order of birds and one of the most widely studied groups in evolutionary biology and ecology. Until recently genomic tools in passerines relied on chicken genomic resources. Here we report the construction and analysis of a whole-genome linkage map for the zebra finch (Taeniopygia guttata) using a 354-bird pedigree. The map contains 876 SNPs dispersed across 45 linkage groups and we found only a few instances of interchromosomal rearrangement between the zebra finch and the chicken genomes. Interestingly, there was a greater than expected degree of intrachromosomal rearrangements compared to the chicken, suggesting that gene order is not conserved within avian chromosomes. At 1068 cM the map is approximately only one quarter the length of the chicken linkage map, providing further evidence that the chicken has an unusually high recombination rate. Male and female linkage-map lengths were similar, suggesting no heterochiasmy in the zebra finch. This whole-genome map is the first for any passerine and a valuable tool for the zebra finch genome sequence project and for studies of quantitative trait loci.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Phylogeny and diversification of the largest avian radiation.

          The order Passeriformes ("perching birds") comprises extant species diversity comparable to that of living mammals. For over a decade, a single phylogenetic hypothesis based on DNA-DNA hybridization has provided the primary framework for numerous comparative analyses of passerine ecological and behavioral evolution and for tests of the causal factors accounting for rapid radiations within the group. We report here a strongly supported phylogenetic tree based on two single-copy nuclear gene sequences for the most complete sampling of passerine families to date. This tree is incongruent with that derived from DNA-DNA hybridization, with half of the nodes from the latter in conflict and over a third of the conflicts significant as assessed under maximum likelihood. Our historical framework suggests multiple waves of passerine dispersal from Australasia into Eurasia, Africa, and the New World, commencing as early as the Eocene, essentially reversing the classical scenario of oscine biogeography. The revised history implied by these data will require reassessment of comparative analyses of passerine diversification and adaptation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-throughput DNA methylation profiling using universal bead arrays.

            We have developed a high-throughput method for analyzing the methylation status of hundreds of preselected genes simultaneously and have applied it to the discovery of methylation signatures that distinguish normal from cancer tissue samples. Through an adaptation of the GoldenGate genotyping assay implemented on a BeadArray platform, the methylation state of 1536 specific CpG sites in 371 genes (one to nine CpG sites per gene) was measured in a single reaction by multiplexed genotyping of 200 ng of bisulfite-treated genomic DNA. The assay was used to obtain a quantitative measure of the methylation level at each CpG site. After validating the assay in cell lines and normal tissues, we analyzed a panel of lung cancer biopsy samples (N = 22) and identified a panel of methylation markers that distinguished lung adenocarcinomas from normal lung tissues with high specificity. These markers were validated in a second sample set (N = 24). These results demonstrate the effectiveness of the method for reliably profiling many CpG sites in parallel for the discovery of informative methylation markers. The technology should prove useful for DNA methylation analyses in large populations, with potential application to the classification and diagnosis of a broad range of cancers and other diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Male attractiveness and differential testosterone investment in zebra finch eggs.

              Good-genes hypotheses of sexual selection predict that offspring fathered by preferred males should have increased viability resulting from superior genetic quality. Several studies of birds have reported findings consistent with this prediction, but maternal effects are an important confounding variable. Those studies that have attempted to control for maternal effects have only considered differential maternal investment after egg laying. However, female birds differentially deposit testosterone in the eggs, and this influences the development of the chick. This study shows that female birds deposit higher amounts of testosterone and 5alpha-dihydrotestosterone in their eggs when mated to more attractive males.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                May 20 2008
                May 2008
                May 2008
                May 20 2008
                : 179
                : 1
                : 651-667
                Article
                10.1534/genetics.107.086264
                2390641
                18493078
                098588b1-feb8-445c-bca0-2c92650eb902
                © 2008
                History

                Comments

                Comment on this article