13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway.

      The Journal of clinical investigation
      Angiotensin II, physiology, Animals, Calcineurin, Lymphocyte Activation, Mice, Mice, Inbred C57BL, Peptidyl-Dipeptidase A, metabolism, Receptor, Angiotensin, Type 1, Receptor, Angiotensin, Type 2, Receptors, Angiotensin, Renin-Angiotensin System

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The renin-angiotensin system (RAS) is a key regulator of vascular tone and blood pressure. In addition, angiotensin II also has a number of cellular effects that may contribute to disease pathogenesis. Using Agtr1a(-/-) mice, which lack AT(1A) receptors for angiotensin II, we have identified a novel function of the RAS to modulate the immune system. We find that angiotensin II, acting through type 1 (AT(1)) receptors on immune cells, triggers the proliferation of splenic lymphocytes. These actions contribute to the vigor of cellular alloimmune responses. Within lymphoid organs, sufficient components of the RAS are present to activate AT(1) receptors during an immune response, promoting cell growth. These actions require activation of calcineurin phosphatase. In an in vivo model of cardiac transplantation, the absence of AT(1) signaling accentuates the immunosuppressive effects of the calcineurin inhibitor cyclosporine. We conclude that inhibition of AT(1) receptor signaling should be useful as an anti-inflammatory and immunosuppressive therapy. Furthermore, the actions of the RAS to promote lymphocyte activation may contribute to inflammation that characterizes a number of diseases of the heart and the vascular system.

          Related collections

          Author and article information

          Comments

          Comment on this article