Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integration of transcriptomics reveals ferroptosis-related signatures and immune cell infiltration in bronchopulmonary dysplasia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ferroptosis has emerged as a significant factor in the development of bronchopulmonary dysplasia (BPD). Nevertheless, our understanding of the potential involvement of ferroptosis-related genes (FRGs) in BPD remains incomplete. In this study, we leveraged the Gene Expression Omnibus (GEO) database to investigate this aspect. We identified 20 differentially expressed FRGs that are associated with BPD, shedding light on their potential role in the condition.LASSO along with SVM-RFE algorithms found that 12 genes: MEG3, ACSL1, DPP4, GALNT14, MAPK14, CD82, SMPD1, NR1D1, PARP3, ACVR1B, H19, and SLC7A11 were closely related to ferroptosis modulation and immunological response. These genes were used to create a nomogram with good predictive power and were found to be involved in BPD-linked pathways. In addition, the marker genes-based prediction model performed well in external validation data sets. The study also showed a significance between BPD and control samples in terms of immune cell infiltration. These findings may help improve our understanding of FRGs in BPD and lead to the development of more effective immunotherapies.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.

          G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ferroptosis: an iron-dependent form of nonapoptotic cell death.

            Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Metascape provides a biologist-oriented resource for the analysis of systems-level datasets

              A critical component in the interpretation of systems-level studies is the inference of enriched biological pathways and protein complexes contained within OMICs datasets. Successful analysis requires the integration of a broad set of current biological databases and the application of a robust analytical pipeline to produce readily interpretable results. Metascape is a web-based portal designed to provide a comprehensive gene list annotation and analysis resource for experimental biologists. In terms of design features, Metascape combines functional enrichment, interactome analysis, gene annotation, and membership search to leverage over 40 independent knowledgebases within one integrated portal. Additionally, it facilitates comparative analyses of datasets across multiple independent and orthogonal experiments. Metascape provides a significantly simplified user experience through a one-click Express Analysis interface to generate interpretable outputs. Taken together, Metascape is an effective and efficient tool for experimental biologists to comprehensively analyze and interpret OMICs-based studies in the big data era.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                20 October 2023
                October 2023
                20 October 2023
                : 9
                : 10
                : e21093
                Affiliations
                [a ]Department of Pediatrics, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai, China
                [b ]Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
                [c ]Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
                [d ]Department of Pediatric Nephrology, Wuxi Children's Hospital, Wuxi, China
                [e ]Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
                Author notes
                []Corresponding author. Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China. dxyjiang@ 123456163.com
                [∗∗ ]Corresponding author. Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China. gpzhou20@ 123456163.com
                Article
                S2405-8440(23)08301-9 e21093
                10.1016/j.heliyon.2023.e21093
                10622619
                37928394
                09e622bd-49a6-4023-831d-16b82dc60755
                © 2023 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 3 March 2023
                : 12 September 2023
                : 16 October 2023
                Categories
                Research Article

                bronchopulmonary dysplasia,diagnostic,ferroptosis,immune infiltration,prediction model

                Comments

                Comment on this article