81
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      NF-κB, inflammation, immunity and cancer: coming of age

      ,
      Nature Reviews Immunology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fourteen years have passed since nuclear factor-κB (NF-κB) was first shown to serve as a molecular lynchpin that links persistent infections and chronic inflammation to increased cancer risk. The young field of inflammation and cancer has now come of age, and inflammation has been recognized by the broad cancer research community as a hallmark and cause of cancer. Here, we discuss how the initial discovery of a role for NF-κB in linking inflammation and cancer led to an improved understanding of tumour-elicited inflammation and its effects on anticancer immunity.

          Related collections

          Most cited references157

          • Record: found
          • Abstract: found
          • Article: not found

          Immunological aspects of cancer chemotherapy.

          Accumulating evidence indicates that the innate and adaptive immune systems make a crucial contribution to the antitumour effects of conventional chemotherapy-based and radiotherapy-based cancer treatments. Moreover, the molecular and cellular bases of the immunogenicity of cell death that is induced by cytotoxic agents are being progressively unravelled, challenging the guidelines that currently govern the development of anticancer drugs. Here, we review the immunological aspects of conventional cancer treatments and propose that future successes in the fight against cancer will rely on the development and clinical application of combined chemo- and immunotherapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation.

            A large proportion of colorectal cancers (CRCs) display mutational inactivation of the TGF-β pathway, yet, paradoxically, they are characterized by elevated TGF-β production. Here, we unveil a prometastatic program induced by TGF-β in the microenvironment that associates with a high risk of CRC relapse upon treatment. The activity of TGF-β on stromal cells increases the efficiency of organ colonization by CRC cells, whereas mice treated with a pharmacological inhibitor of TGFBR1 are resilient to metastasis formation. Secretion of IL11 by TGF-β-stimulated cancer-associated fibroblasts (CAFs) triggers GP130/STAT3 signaling in tumor cells. This crosstalk confers a survival advantage to metastatic cells. The dependency on the TGF-β stromal program for metastasis initiation could be exploited to improve the diagnosis and treatment of CRC. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors.

              The interferon-regulatory factor (IRF) family of transcription factors was initially found to be involved in the induction of genes that encode type I interferons. IRFs have now been shown to have functionally diverse roles in the regulation of the immune system. Recently, the crucial involvement of IRFs in innate and adaptive immune responses has been gaining much attention, particularly with the discovery of their role in immunoregulation by Toll-like receptors and other pattern-recognition receptors.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Immunology
                Nat Rev Immunol
                Springer Nature
                1474-1733
                1474-1741
                January 22 2018
                January 22 2018
                :
                :
                Article
                10.1038/nri.2017.142
                29379212
                09ef3923-a7cb-4656-939e-4aedb702ed3c
                © 2018
                History

                Comments

                Comment on this article