14
views
0
recommends
+1 Recommend
0 collections
    0
    recommends
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vitamin C in Stem Cell Biology: Impact on Extracellular Matrix Homeostasis and Epigenetics

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transcription factors and signaling molecules are well-known regulators of stem cell identity and behavior; however, increasing evidence indicates that environmental cues contribute to this complex network of stimuli, acting as crucial determinants of stem cell fate. l-Ascorbic acid (vitamin C (VitC)) has gained growing interest for its multiple functions and mechanisms of action, contributing to the homeostasis of normal tissues and organs as well as to tissue regeneration. Here, we review the main functions of VitC and its effects on stem cells, focusing on its activity as cofactor of Fe +2/ αKG dioxygenases, which regulate the epigenetic signatures, the redox status, and the extracellular matrix (ECM) composition, depending on the enzymes' subcellular localization. Acting as cofactor of collagen prolyl hydroxylases in the endoplasmic reticulum, VitC regulates ECM/collagen homeostasis and plays a key role in the differentiation of mesenchymal stem cells towards osteoblasts, chondrocytes, and tendons. In the nucleus, VitC enhances the activity of DNA and histone demethylases, improving somatic cell reprogramming and pushing embryonic stem cell towards the naive pluripotent state. The broad spectrum of actions of VitC highlights its relevance for stem cell biology in both physiology and disease.

          Related collections

          Most cited references143

          • Record: found
          • Abstract: found
          • Article: not found

          TET enzymes, TDG and the dynamics of DNA demethylation.

          DNA methylation has a profound impact on genome stability, transcription and development. Although enzymes that catalyse DNA methylation have been well characterized, those that are involved in methyl group removal have remained elusive, until recently. The transformative discovery that ten-eleven translocation (TET) family enzymes can oxidize 5-methylcytosine has greatly advanced our understanding of DNA demethylation. 5-Hydroxymethylcytosine is a key nexus in demethylation that can either be passively depleted through DNA replication or actively reverted to cytosine through iterative oxidation and thymine DNA glycosylase (TDG)-mediated base excision repair. Methylation, oxidation and repair now offer a model for a complete cycle of dynamic cytosine modification, with mounting evidence for its significance in the biological processes known to involve active demethylation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase.

            Variants in the FTO (fat mass and obesity associated) gene are associated with increased body mass index in humans. Here, we show by bioinformatics analysis that FTO shares sequence motifs with Fe(II)- and 2-oxoglutarate-dependent oxygenases. We find that recombinant murine Fto catalyzes the Fe(II)- and 2OG-dependent demethylation of 3-methylthymine in single-stranded DNA, with concomitant production of succinate, formaldehyde, and carbon dioxide. Consistent with a potential role in nucleic acid demethylation, Fto localizes to the nucleus in transfected cells. Studies of wild-type mice indicate that Fto messenger RNA (mRNA) is most abundant in the brain, particularly in hypothalamic nuclei governing energy balance, and that Fto mRNA levels in the arcuate nucleus are regulated by feeding and fasting. Studies can now be directed toward determining the physiologically relevant FTO substrate and how nucleic acid methylation status is linked to increased fat mass.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Review on iron and its importance for human health

              It is well-known that deficiency or over exposure to various elements has noticeable effects on human health. The effect of an element is determined by several characteristics, including absorption, metabolism, and degree of interaction with physiological processes. Iron is an essential element for almost all living organisms as it participates in a wide variety of metabolic processes, including oxygen transport, deoxyribonucleic acid (DNA) synthesis, and electron transport. However, as iron can form free radicals, its concentration in body tissues must be tightly regulated because in excessive amounts, it can lead to tissue damage. Disorders of iron metabolism are among the most common diseases of humans and encompass a broad spectrum of diseases with diverse clinical manifestations, ranging from anemia to iron overload, and possibly to neurodegenerative diseases. In this review, we discuss the latest progress in studies of iron metabolism and bioavailability, and our current understanding of human iron requirement and consequences and causes of iron deficiency. Finally, we discuss strategies for prevention of iron deficiency.
                Bookmark

                Author and article information

                Journal
                Stem Cells Int
                Stem Cells Int
                SCI
                Stem Cells International
                Hindawi
                1687-966X
                1687-9678
                2017
                20 April 2017
                : 2017
                : 8936156
                Affiliations
                Stem Cell Fate Laboratory, Institute of Genetics and Biophysics ‘A. Buzzati-Traverso', CNR, 80131 Naples, Italy
                Author notes
                *Eduardo Jorge Patriarca: eduardo.patriarca@ 123456igb.cnr.it and

                Academic Editor: Alfredo Garcia

                Author information
                http://orcid.org/0000-0002-6301-7534
                http://orcid.org/0000-0003-0225-9043
                Article
                10.1155/2017/8936156
                5415867
                28512473
                0a245eaf-27a7-4be7-b34b-3040df483a3e
                Copyright © 2017 Cristina D'Aniello et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 December 2016
                : 5 March 2017
                Funding
                Funded by: CARIPLO
                Funded by: Italian Ministry of Education-University-Research
                Award ID: CTN01_00177 Cluster ALISEI_IRMI
                Funded by: AIRC
                Award ID: 11599
                Funded by: Epigenomics Flagship Project (EPIGEN) MIUR-CNR
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article